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ABSTRACT: This paper provides an analysis of the variation in Queensland 
regional unemployment rates. This is done using data from the 1996 Census of Population 
and Housing. A preliminary analysis suggests that the spatial variation in the 
unemployment rate has exhibited a high degree of stability and that this variation is not 
randomly allocated over geographic space. The econometric investigation seeks to explain 
the underlying variables responsible for this variation. This analysis employs spatial 
econometric techniques in an attempt to determine the significance of various economic 
and demographic factors in determining differences in regional unemployment rates. It is 
suggested that these techniques are more appropriate in cases where there is a possibility 
that variables may be related through geographic proximity, as is generally the case with 
studies based on regional data. 

1. INTRODUCTION 

Observed disparities or differentials in unemployment rates are a well 
documented phenomenon with a relatively large body of literature, following 
Thirlwall (1966), discussing the nature of these. Marston (1985) notes that, 
broadly speaking, there are two explanations of these disparities, these being the 
equilibrium and disequilibrium explanation. The equilibrium explanation of 
regional unemployment differentials assumes that labour mobility is relatively 
free between areas. In this situation, excess labour in the area will vanish quickly 
unless workers are compensated in some way that induces them to stay 
voluntarily. For this reason, any persistent geographic unemployment 
differentials are not evidence of uneven labour demand, but reflections of 
workers underlying preferences for certain areas. In contrast, in the 
disequilibrium explanation, economic and social barriers may separate local 
labour markets. If these barriers restrict mobility severely, then weak labour 
demand in one geographic area will raise the unemployment rate above the level 
in areas with strong labour demand.  

These radically different explanations purport to account for unemployment 
differentials between areas. Additionally, Trendle (2001) notes that public 
policies based on either one of these explanations will contradict polices based 
on the other. In the disequilibrium explanation, for example, there is a role for 
regionally targeted policy. Armstrong and Taylor (1993) presume that regional 
unemployment disparities in Britain are the result of slow adjustment processes; 
in this case regionally targeted employment programs can have a long term or 
permanent effect. However, in the case where disparities are the result of 
equilibrium factors, there is no role for regionally targeted employment 
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programs. In the case of the equilibrium explanation, Marston (1985) notes that 
economic disturbances or shocks may move actual regional differentials away 
from their mean values, but such disequilibrium movements are short lived, and 
regional differentials will converge back to their equilibrium means. In this case, 
regionally targeted programs will merely attract more workers into an area, until 
the initial unemployment differentials reappear. 

The aim of this paper is to determine the factors that contribute to these 
observed disparities in regional unemployment rates. The starting point for this 
analysis is data available from the 1996 Census of Population and Housing. 
Regional data from the Community Profile component of this database provides 
the core of the analysis. This database includes a time series component for the 
1986, 1991 and 1996 censuses based on the place of enumeration, along with a 
collection for 1996 based on the place of usual residence, with this latter dataset 
forming the basis of the econometric analysis. However, some preliminary work, 
in particular a descriptive analysis of the regional data, is presented in section 3 
using the time series collection. While this data is not ideal, it provides a useful 
starting place for the analysis of regional unemployment disparities as it allows a 
comparison of regional unemployment by Queensland Local Government Areas 
(LGA’s) over three successive censuses. 

Section 2 provides a brief introduction to spatial econometrics, the technique 
used in this study. This is followed in Section 3 with a preliminary investigation 
of the data. Section 4 provides an explanation of the variables likely to influence 
regional unemployment rates. This section summarises some of the literature on 
regional unemployment disparities noting the variables thought responsible for 
these disparities. This is followed in Section 5 by the results of the estimation of 
a relationship between regional unemployment and the explanatory variables. A 
brief conclusion is provided in Section 6. 

2. AN INTRODUCTION TO SPATIAL ECONOMETRIC ANALYSIS 

Studies incorporating the use of small area data in cross sectional analysis are 
something of a rarity in Australia with a notable exception being Lawson and 
Dwyer (2002) which looked at regional labour market adjustment. In the 
international literature there are numerous studies that have attempted to explain 
disparities in regional unemployment rates using cross section data. These 
include Metcalf (1975), Marston (1985), Partridge and Rickman (1995 and 
1997), Malizia and Shanzi Ke (1993) and Molho (1995). 

All but the last of these employed standard regression techniques, while 
Mohlo (1995) on the other hand, employs techniques from the developing field 
of spatial econometrics. These techniques are ideally suited to the study of 
regional data and are employed in this study. The importance of taking these 
effects into account was reviewed extensively by Anselin (1988a) and since then 
a growing literature attests to the importance of the problem and the 
consequences of errors in misspecification that can occur if spatial issues are 
ignored in cross sectional data analysis involving geographical units. 

The field of spatial econometrics has developed only relatively recently with 
one of the early contributors being Cliff and Ord (1973) where the idea of spatial 
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autocorrelation was introduced. Positive spatial autocorrelation occurs when 
similar values for a variable are clustered together in space while negative 
autocorrelation appears when dissimilar values are clustered in space. Lesage 
(1997) notes that OLS estimators are biased and inconsistent in sample data that 
contains spatial dependence. Spatial autocorrelation also implies the absence of 
independence among observations in cross-sectional data and can be taken to 
mean the existence of a functional relationship between what happens at one 
point and elsewhere. 

Magalhaes et al. (2000) suggest that the problem may originate as a 
measurement problem stemming from the fact that the data has been divided into 
artificial spatial units that do not coincide with the real spatial dimension of the 
phenomenon, or alternately, spatial autocorrelation can originate as a result of a 
true spatial interaction among the variables. There may also be problems that 
stem from the lack of homogeneity of the spatial units themselves. Different 
units (i.e. cities, rural regions, etc) have different shapes, densities and sizes 
which can generate measurement errors that can cause heteroscedasticity, or in 
the case of spatial econometrics, spatial heterogeneity. Anselin and Rey (1997) 
and Magalhaes et al. (2000) note that it is not easy to differentiate between 
spatial autocorrelation and spatial heterogeneity. They suggest that in a cross 
sectional setting, the two effects might be equivalent. Generally speaking, 
whatever the source of the spatial error process, it is dealt with in the same way 
i.e., the explicit inclusion of space in the estimated equation. 

In spatial econometrics the notion of space is introduced into the estimation 
process through the spatial weight matrix. This matrix, usually denoted W, is 
used to capture the adjacency patterns of regional units. In the simplest case, a 
symmetric matrix is defined by having the element (i, j) set equal to 1 if i and j 
are neighbours and 0 otherwise. By convention, the diagonal elements are set to 
zero, wi = 0. Before use in estimation the weight matrix is standardised, denoted 
by the superscript s, with each of the non-zero elements being defined as 

ijjij
s
ij www Σ= / . In this matrix, the elements of the rows sum to one. Besides 

facilitating the interpretation of the weights as an averaging of neighbouring 
values, this manipulation ensures the comparability between models of the 
spatial parameters in many spatial stochastic processes (Anselin and Bera, 1998). 
There are other more complex specifications of weight matrices based, for 
instance, on the inverse of distance from a capital city or on economic variables 
such as known trade flows.  

Magalhaes et al. (2000) note that the main reason for the use of the spatial 
weight matrix is to associate a variable, at one point in space, to the observation 
of the variable in other spatial locations. In contrast to time series, where the 
relation in time can be expressed by the simple notion of a lag operator L, where 

st
s yyL −=  shifts yt , s periods back in time, in space the problem becomes more 

complicated. The additional complication stems from the fact that there are many 
possible directions over which the spatial shift operator can be applied. One 
solution that has been offered to this problem is the use of the concept of a 
spatial lag operator Ls. The idea is to use a weighted sum of the values of 
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neighbouring units. In matrix notation this can be written as: 

yWyL ss =  (1) 

It is also possible to define higher order spatial lag operators. By multiplying W 
by Wy is equivalent to generating W2y, a second order spatial lag. 

The lack of a unique procedure to select a weight matrix has generated 
alternative approaches to address the problems caused by the misspecification of 
such a matrix. Griffith (1996) notes that the statistical qualities of the maximum 
likelihood estimators are affected by misspecification problems, creating 
problems for spatial statistical analysis. The same author provides some general 
guidelines that can be applied when specifying a weight matrix. In particular, 
Griffith (1996) considers it better to posit some reasonable geographic weight 
matrix than to assume all entries are zero, i.e., ignoring spatial dependence is not 
the best alternative. In addition, the same author also suggested that a simple 
specification, such as a first order contiguity matrix is, in many situations, to be 
preferred to more complicated spatial structures, such as distance decay. 

A number of alternative frameworks exist for dealing with the problem of 
spatial autocorrelation. The most comprehensive framework is the general spatial 
model, shown in Equation (2); 

μβρ ++= XyWy 1  

εμλμ += 2W  

),0( 2
nIN σε ≈  

(2) 

Where y contains a vector of cross sectional dependent variables and X 
represents an kn×  matrix of explanatory variables. W1 and W2 are known 

nn×  spatial weights matrices, usually containing contiguity relations or 
functions of distance. 

 From this general model the imposition of restrictions can be used to derive 
additional models. For example, setting W2 = 0 in Equation (2) produces a spatial 
autoregressive model shown in Equation (3). This model is analogous to the 
lagged dependent variable model in time series. Here we have an additional 
explanatory variable in the X matrix to explain variation in y over the spatial 
sample of observations. 

εβρ ++= XyWy 1  

),0( 2
nIN σε ≈  

(3) 

Letting W1 = 0 from Equation (2) results in a regression model with spatial 
autocorrelation in the disturbances as shown in Equation (4). This model is 
generally known as the spatial error model. 

μβ += Xy  

εμλμ += 2W  

),,0( 2
nIN σε ≈  

(4) 
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The spatial autoregressive model shown in Equation (3) is clearly related to a 
distributed lag interpretation, in that the lagged dependent variable, Wy, can be 
seen as equivalent to the sum of a power series of lagged dependent variables 
stepping out across a map, with the impact spillovers declining with successively 
higher powers of ρ. This may be termed a structural autoregressive relationship, 
and one would expect it to be based on economic processes. In contrast, the 
spatial error model presupposes a shared spatial process affecting all of the 
variables, and is more often interpreted as indicating missing variables. 

A recent line of research in the analysis of spatial data has focussed on how 
to establish the characteristics of the dependence between observations, whether 
dependence can be demonstrated and how it ought to be represented. One of the 
earliest tests for spatial autocorrelation of the residuals of a regression 
relationship was the Moran I statistic presented in Cliff and Ord (1973), this tests 
takes the form: 

ee
eWeI

'
' 1=  (5) 

where e is a 1×n  vector of regression residuals from the OLS estimation of an 
equation. Inference for this test is carried out on the basis of an asymptotically 
normal standardized z-value, obtained from subtracting the expected value and 
dividing by the standard deviation. 

Anselin et al. (1996) note that while the Moran I statistic is a very powerful 
test it does not provide any information about the nature of the spatial 
relationship. This has lead to the development of new tests, these being the 
Lagrange Multiplier spatial error and lag tests and robust versions of these tests. 

The Lagrange Multiplier spatial error test (LM-ERR) was developed by 
Burridge (1980). This test has the form: 

( )
1

22
1 /'
T

seWeERRLM =−  (6) 

where nees /'2 = , and )( 2
11

'
11 WWWtrT +− , with tr as the matrix trace operator. 

This statistic is distributed as 2χ  with one degree of freedom. 
The robust version of the spatial error tests (RLM-ERR) owes its origin to 

Bera and Yoon (1992). This test is robust to local misspecification in the form of 
a spatial lag term and is computed as: 
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where W1Xβ is a spatial lag of the predicted values from the initial OLS 
regression and XXXXIM 1)'(( −−=  is the projection matrix. Just as with the 

LM-ERR this statistic is distributed as 2χ  with 1 degree of freedom. 
The Lagrange Multiplier test for spatial lag dependence (LM-LAG) is due to 

Anselin (1988b). This test statistic is derived as;  

)~(
)/'( 2

1

βρ −

=−
JR

syWeLAGLM  (9) 

again, this statistic is distributed as 2χ  with 1 degree of freedom. 
The robust version of this test (RLM-LAG) is the counterpart of the robust 

version of the spatial error test and again owes its development to Bera and Yoon 
(1992). This test allows for the testing of spatial lag dependence robust to local 
misspecification in the form of a spatial moving average process and is defined 
as: 

2 2 2

1 1

1

( ' / ' / )

( )

e W y s e W e s
RLM LAG

RJ Tρ β−

−
− =

−
 (10) 

with the statistic again distributed as 2χ  with 1 degree of freedom. 
These tests allow the researcher to determine the appropriate way in which to 

incorporate spatial dependence into the estimated relationship. Anselin, Florax 
and Yoon (1996) conduct Monte Carlo experiments on these tests and conclude 
that they have good power for detecting spatial dependence and also provide 
insight into the way this spatial dependence should be modelled. This is an 
important consideration, as Anselin (2001) demonstrates. Some forms of spatial 
interaction such as that represented by a spatial autoregressive model imply that 
changes or shocks to the model in one region have a global effect or will, in our 
case alter all regional unemployment rates with the amount of the effect being 
inversely related to the distance from the region receiving the initial impact. On 
the other hand, the spatial dependencies represented by the spatial error model 
have only local effects, flowing only to immediate neighbours. 

3. UNEMPLOYMENT DSPARITIES IN QUEENSLAND – A 
DESCRIPTIVE ANALYSIS 

The starting point for this analysis is the small area data from the 1996 
Census of Population and Housing, and in particular the Community Profiles 
component of this database. This database includes a time series component, 
incorporating small area data from the 1986, 1991 and 1996 censuses. Ideally, 
data collected on a usual residence basis would be desirable. Unfortunately, the 
time series data refers to the place of enumeration, or place staying on the night 
of the census, while not ideal, this provides a useful starting place for the 
analysis of regional unemployment disparities. 
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Table 1. Descriptive statistics: Regional Unemployment Rates, 1986 to 1996. 
 1986 1991 1996 
Average UE rate 10.10 9.96 8.47 
Highest 24.03 28.59 23.56 
Lowest 0.00 2.57 1.04 
Range 24.03 26.03 22.52 
Sample SE 4.80 4.83 4.57 
Correlation   0.75 0.72 
Speamans rank correlation stability   -8.64 -8.11 

 
Table 1 provides summary statistics for the regional unemployment rates of 

Queensland over the period 1986 to 1996. This table shows that the average 
unemployment rate has decreased over the ten year period from 10.1% in 1986 to 
8.5% in 1996, a decrease of 1.6 percentage points. The range of unemployment 
rates has also decreased marginally from 24.0% in 1986 to 22.5% in 1996. 

This small decrease in both the average and the range of unemployment rates 
has been accompanied by a high level of stability in the correlation of regional 
unemployment rates, with both the correlation coefficients and the Spearman’s 
test of rank order stability being significant for unemployment rates between 
each census period1. This suggests that regions have retained their relative 
ranking, with high unemployment rate regions remaining high unemployment 
rate regions over the period while regions with relatively low unemployment 
rates have retained their status as low unemployment rate regions. This suggests 
a high degree of persistence in the observed unemployment structure. 

An alternate perspective on regional unemployment is provided by the Moran 
scatter plots provided in Figure 1. These figures plot each LGA’s difference from 
the average unemployment rate against their spatial lag, i.e., a weighted average 
of the unemployment rates of neighbouring regions. The four different quadrants 
of the Moran scatter plot identify four types of spatial association between a 
LGA and its neighbours: quadrant 1 shows low unemployment rate LGA’s 
surrounded by high unemployment rate neighbours; In quadrant 2 high 
unemployment LGA’s with high unemployment neighbours appear; quadrant 3 
records low unemployment rate LGA’s surrounded by low unemployment rate 
neighbours while quadrant 4 shows high unemployment rate LGA’s with low 
unemployment rate neighbours. 

Concentrations of observations in the top right hand corner and bottom left 
hand corner indicate that regions with high unemployment rates tend to be 
adjacent to regions with high unemployment rates and regions with low 
unemployment rates are likewise clustered together in space. The trend line 
through the scatter diagrams suggests that this spatial clustering of regions 
 

                                                           
1 These correlation coefficients refer to the regional unemployment rate for the year 
referred to by the specific column’s correlation to the 1986 regional unemployment. 



334 Bernard Trendle 

 

Figure 1. Moran Scatterplot – Regional Unemployment Rates. 
 

Table 2. Moran I Tests for Spatial Autocorrelation. 
Test Moran I 

Value 6.1593 
Marginal probability 0.0000 

 
sharing similar unemployment rates is significant, or that variations in regional 
unemployment do not occur randomly over Queensland’s geographic space. This 
conclusion is confirmed by the test results shown in Table 2 where the results of 
the application of the Moran I test are presented. 

In this case, the Moran I-statistic takes the form; 
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The Moran I statistic is tested using analytical expectations and variances 
based largely on the neighbourhood structure assumed in the spatial weighting 
matrix and are asymptotically distributed. The significance of the Moran I 
statistic is assessed by a standardized z-score that follows a normal distribution 
and is computed by subtracting the theoretical mean from I and dividing the 
remainder by the standard deviation. 

4. A MODEL OF LOCAL UNEMPLOYMENT 

As noted in Section 2 there have been many cross sectional studies 
attempting to determine the variables responsible for the variation in regional 
unemployment rates. The variables that have been found significant in 
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explaining regional variation in unemployment rates can be classified into three 
categories, these being; industry or product market variables, demographic 
variables and regional factor endowments.  

4.1 Industry Variables 

A number of industry variables have been found to be significant in 
explaining differences in regional unemployment rates. These variables include 
the regional industry structure, in particular the extent of industrial concentration 
within the regional economy and shares of employment within particular 
industries within the regional economy. There are a number of ways in which 
industrial concentration can be measured; Malazia and Shanzi Ke (1993) for 
example, use the Entropy index of industrial concentration while Partridge and 
Rickman (1995) incorporate the Herfindahl index of industrial concentration. 

Generally it is considered that regions with a higher measured industrial 
concentration are likely to have higher unemployment rates than industrially 
diverse regions. Malazia and Shanzi Ke (1993) suggest that regions with greater 
diversity are more likely to be able to absorb adverse economic shocks and so, 
all things being equal, should have a lower unemployment rate than the more 
industrially concentrated regions. In this study, the variable HERFINDAHL, 
being the Herfindahl index of industrial concentration has been incorporated to 
determine if regional variation in employment concentration across industries 
has influenced the rate of unemployment experienced in regions. This index has 
been calculated for all regions using the first division Australian New Zealand 
Standard Industry Classification (ANZSIC) data provided in the CPROFILE 
database. This data provides a disaggregation of 17 industry categories.  

Employment concentrations in particular sectors of the economy have also 
been found to have a significant influence on variations in the regional 
unemployment rate. Different industries may be at different stages of their 
economic cycle, thus, regional unemployment rates may vary because of the 
variations in the economic bases of the regions. In this study this is controlled for 
through the inclusion of variables capturing the shares of employment in various 
sectors of the economy. The variables included to capture the effect of the 
variation in regional economic bases consisted of; the percentage of the labour 
force employed in agriculture (PERAGR), in addition to the percentage of the 
non-agricultural labour force employed in manufacturing (PERMAN), the 
percentage of the non-agricultural labour force employed in services excluding 
Public administration and defence and Electricity, gas and water (PERSER) and 
the percentage of the non-agricultural labour force employed in mining 
(PERMIN). In the final model, PERSER and PERMIN were excluded on the 
basis that they were insignificant in all preliminary equations. 

Differences in regional incomes are also thought to be significant in 
explaining regional variations in unemployment rates. Partridge and Rickman 
(1995) note that the association between wages and unemployment may be 
ambiguous. For example, these authors note that there may be a hedonic wage-
unemployment tradeoff or there may be wait unemployment where workers 
queue for high wage jobs. In this study the natural log of average regional 
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income is incorporated (LINCOME). Data to construct this variable is available 
from the Australian Taxation Office and following Mohlo (1995) it relates to the 
preceding year in order to avoid problems of endogeneity associated with using 
the income variable available in the CPROFILE dataset. 

A final group of variables that may influence regional unemployment rates 
that fall into this category relate to the growth of the regional economy. The 
growth of the regional labour market will act to reduce unemployment, it may 
also attract additional labour into the region so that the final effect on the 
regional unemployment rate is not clear. In this study two variables are 
incorporated, these being the regional labour market growth rate over the 
intercensal period 1991-96 (GROWTH) and the average rate of growth of 
neighbouring regions (WGROWTH) derived by multiplying GROWTH by the 
row standardized spatial weight matrix (W).  

4.2 Demographic Variables 

A number of demographic variables have also been found to be significant in 
explaining differences in regional unemployment rates. These variables include 
the education levels of the population in a region, the proportion of the labour 
force comprised of females and the proportion of migrants, especially from non-
English speaking backgrounds. In this study the percentage of the population 
with bachelor degrees or above (PERBACH) and the proportion of the labour 
force made up by females (PERFEM) are included. Initially, attempts were made 
to incorporate variables that measured the extent of migration into regions, from 
both interstate and overseas, but in all cases these variables were found to be 
insignificant. 

In U.S. studies (see, for example, Malazia and Shanzi Ke 1993, and Partridge 
and Rickman 1995, and 1997), the proportion of the population of African origin 
is also found to be a significant determinant of differences in regional 
unemployment rates. In this study the proportion of the population of indigenous 
origin (PERIND) is included, it is likely that indigenous Australians have a more 
difficult time finding work, consequently the unemployment rate for this 
demographic group is likely to be higher. For this reason, it might be expected 
that regions with a high proportion of the population from an indigenous 
background would have a higher unemployment rate. 

Other studies have incorporated variables to measure the shares of the labour 
force made up by different age groups into the analysis of regional variation in 
unemployment. For example, Metcalfe (1975) notes that young and old workers 
experience different patterns of unemployment to prime age workers. Regions 
with different age distributions of the labour force will, for this reason, 
experience different rates of unemployment. If workers of certain age groups are 
more or less likely to leave high unemployment regions than other groups this 
may result in a strong statistical relationship between the proportion of the labour 
force comprised of these age cohorts and the unemployment rate. In this analysis 
two age variables were tested, these being the proportion in the 15 to 24 age 
cohort (PERYNG) and the proportion in the 54+ age cohort (PEROLD).  



Regional Variation in Queensland’s Unemployment Rate 337 

 

4.3 Regional Factor Endowments 

In addition to economic and demographic variables, a number of region 
specific variables are thought to influence the unemployment rate. These are 
variables that influence the amenity value of regional economies. Marston (1985) 
notes that differences in the amenity value of a region are thought to make a 
region a more or less desirable place to live. Consequently, it is suggested that 
persons may be prepared to live in certain regions that have a relatively high 
level of these amenities and accept a higher risk of remaining or becoming 
unemployed. Thus, higher levels of desirable regional amenities may be 
associated with higher unemployment rates. The particular variables that make 
up this category range from the climate of the region, through to house and land 
costs and the availability of education and health care facilities. 

Some studies, including Partridge and Rickman (1995 and 1997) incorporate 
regional population to capture regional amenity values. These authors suggest 
that regions with larger populations may have amenity values due to access to 
more schools, entertainment, health care facilities etc. Additionally, it could be 
that a higher population has negative regional amenity values associated with 
increased congestion and pollution. In this study the natural logarithm of 
population (LPOP) is included in the estimated relationships. It is hypothesised 
by Partridge and Rickman (1995 and 1997) that, other things being equal, 
regions with a higher population will have a higher amenity value, thus it is 
expected that the coefficient of this variable will be negative as persons are 
prepared to accept higher rates of unemployment in return for greater local 
amenity values. 

Additional variables that have been tested in this study to capture the effect of 
region specific amenities comprise the population density and a dummy variable 
for proximity to the coast. Both of these variables were tried in the initial stages 
of this study but found to be insignificant. 

5. SPATIAL ECONOMETRIC ANALYSIS OF QUEENSLAND 
UNEMPLOYMENT 

The use of variables to capture the effect of differences in regional economic, 
industrial and demographic characteristics in a purely cross section study may, as 
noted by Molho (1995), be considered equivalent to picking up the regional 
fixed-effects which appear in a pooled cross-section/time-series study. These 
fixed effects influence the underlying equilibrium pattern of employment rates 
that would be expected to exist in the absence of any demand shocks. For this 
reason, the modelling undertaken in this study could be seen as attempting to 
explain the equilibrium distribution of regional unemployment rates within 
Queensland. 

The first stage in the process of determining the significance of spatial 
autocorrelation is to conduct a series of tests on the residuals of the OLS version 
of the model incorporating the variables discussed in section 4. A wide range of 
tests is available, including the Moran I statistic, Lagrange Multiplier (LM) error,  
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Table 3. Tests for Spatial Autocorrelation in the Residuals of the OLS Equation2. 
Test Moran I LM 

Error 
LM Lag RLM 

Error 
RLM 
Lag 

Value 2.2324 3.0814 9.8770 1.8771 8.6726 
Marginal Probability 0.0330 0.0792 0.0017 0.1707 0.0032 
 
LM lag and robust versions of these latter two tests. The results of applying these 
tests to the residuals of the OLS equation are presented in Table 3. 

The results of these five tests suggest that we can reject the hypothesis of 
spatial independence due to the small marginal probabilities for the Moran I test 
and the LM lag and robust form of the LM lag test, and conclude that the 
residuals from the OLS estimation exhibit spatial dependence, best represented 
by the spatial autoregressive model.  

The Moran I test is perhaps the most commonly used specification test for 
spatial autocorrelation. Anselin et al. (1996) note that this test consistently 
outperforms other tests in terms of power in simulation results. A limitation of 
the test however, is that it provides no indication of whether the spatial 
autocorrelation present in the residuals is due to a true spatial process, best 
represented by a spatial autogressive model, or an error process, best represented 
by a spatial error model. On the other hand, the Lagrange Multiplier tests, 
especially the robust tests provide a means of discriminating between the spatial 
autoregressive or error model.  

The strategy used in the model selection process in this study has been to 
estimate several versions of the models presented in Equations (2) through (4). 
These models included both spatially lagged dependent variables, spatially 
lagged error terms or both spatially lagged dependent variables and error terms. 
In addition, 1st and 2nd order spatial weight matrices were tried. All weights 
matrices used were based on the simple contiguity matrix, i.e., with the elements 
(i, j) of the 1st order matrix set to 1 if i and j are neighbours and 0 otherwise. It 
was found that, based on the value of the log-likelihood function and 2R  the 
spatial autoregressive model seemed to be the most appropriate, performing 
marginally better on these criteria than competing models and confirming the 
results of the specification tests presented in Table 3. However, further tests of 
the residual of the spatial autoregressive model indicated that residual spatial 
autocorrelation existed. For this reason a spatial autoregressive model estimated 
using the 2nd order spatial weight matrix was selected as the final version of the 
model. 

In the analysis of cross section data, heteroscedasticity is often a serious 
problem and Lesage (1997) notes that Bayesian estimation is well suited to 
spatial econometric problems, with a large Bayesian literature that deals with the 
problem of heteroscedastic disturbances. The same author also notes (see 
Lesagee, 1997 and 1999) that the presence of a few outliers in the data will 
produce a violation of the assumption of normality in small samples. This is the 

                                                           
2 A description of these tests can be found in Anselin 1988, p. 108. 
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type of problem that the heteroscedastic modelling approach of Geweke (1993) 
based on Gibbs sampling estimation is designed to address.  

Gibbs sampling has greatly reduced the computational problems that plagued 
previous applications of the Bayesian methodology, with this technique 
providing a way to sample data from a multivariate probability density based 
only on the densities of subsets of vectors conditional on all others. Lesage 
(1997) suggests that this sampling method proves useful for Bayesian estimation 
of spatial autoregressive models, where data exhibit heterogeneity over space, or 
the spatial data sample is small and contains outlying observations. In these 
cases, the assumption of normality and the asymptotic arguments used to derive 
maximum likelihood estimates of the precision of the parameters are not met. 

The form of the Bayesian spatial autoregressive model is presented in 
Equation (12). 

1y W y Xρ β μ= + +  

2(0, )nN Iε σ≈  

1 2( , , .... )nV diag ν ν ν=  

~ ( , )N c Tρ  

2/ ~ ( ) /ir ID r rν χ  

~ ( , )r m kΓ  

0 0~ ( , )v dσ Γ  

(12) 

Where W is a spatial contiguity matrix that has been standardised to have row 
sums of unity. X represents an kn×  matrix of explanatory variables, while the 
ε  are assumed to be normally distributed random variables that have a non-
constant disturbance. This formulation allows for an informative prior on the 
spatial autoregressive parameter ρ , the heteroscedastic control parameter r and 
the disturbance variance σ . 

To implement the Bayesian estimation, priors must be placed on the 
parameters β  and a diffuse prior on σ , the variance. The relative variance 

terms ),....,( 21 nvvv  are assumed fixed but unknown parameters that need to be 
estimated. Lesage (1997) notes that the thought of estimating the n parameters 

),....,( 21 nvvv , in addition to the k+1 parameters, β  and σ  using n data points 
seems problematical from the degrees of freedom perspective. However, 
Bayesian methods overcome this problem by relying on an informative prior for 
the vi parameters. This prior distribution for the vi terms will take the form of an 
independent rr /)(2χ distribution. This allows the estimation of the additional 
n parameters, vi in the model by adding the single parameter r to the estimation 
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procedure. 
The specifics regarding the prior assigned to the vi term can be motivated by 

considering that the mean of the prior equals unity and the variance of the prior 
is 2/r. This implies that as r becomes very large, the terms vi will all approach 
unity, resulting in nIV = , the traditional Gauss-Markov assumption. Lesage 

(1997) notes that the role of nIV ≠ , is to allow the derivation of more robust 
estimates by down weighting outliers and observations containing large 
variances. 

Large r values are associated with a prior belief that outliers and non-constant 
variances do not exist, since this prior would produce nIV = . Large values, 
such as r = 30 or r = 50 produce vi estimates that are close to unity, forcing the 
model to take on a homoscedastic character and producing coefficient estimates 
similar to those from the maximum likelihood spatial autoregressive model. 
Small values of r, around 2 to 7, allow for a non-constant variance and are 
associated with a prior belief that outliers or non-constant variances exist. 

Table 4 provides three versions of the model of regional unemployment. The 
first two columns relate to the model when estimated using OLS with the 
estimated coefficients and t-statistics provided. Columns three and four of this 
table provide an estimate of the maximum likelihood version of the spatial 
autoregressive model along with the relevant t-statistics. This model incorporates 
the same explanatory variables with the addition of ρ, the coefficient of the 
spatially lagged dependent variable. Columns five and six of this table provide 
an estimate of the same model estimated using Bayesian techniques with a 
heteroscedastic prior. Prior to estimating this model a Bayesian model was 
estimated using a homoscedastic prior. For the homoscedastic model, r was set to 
40. The results of this model were close to replicating the estimates from the 
maximum likelihood model. In the heteroscedastic disturbance model r has been 
set to 4, allowing ample opportunity for the vi parameters to deviate from unity3. 

In Table 4 some notable differences can be seen in the estimated coefficients 
and the significance of these coefficients. For example, in moving from the OLS 
version of the model to the maximum likelihood version of the model, the 
average absolute size of the coefficients change by 12.2% while the difference 
between the coefficients in the OLS and Bayesian version of the model differ by 
28.0%. The differences between the maximum likelihood and Bayesian version 
of the spatial autoregressive model are no less significant being 26.0% in  
 

                                                           
3 The justification for this formulation of the model was the plot of the posterior estimates 
of the relative variance terms (vi) which indicated that there are a number of outliers in 
this sample, providing evidence that the data contradicts the homoscedastic prior, thus 
suggesting that the heteroscedastic prior is more appropriate. A strong justification for the 
acceptance of the model estimated using the heteroscedastic prior is also provided by the 
results. If heteroscedasticity had not been a problem the estimated coefficients would have 
almost been identical to those in the model estimated using maximum likelihood 
techniques.  
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Table 4. Maximum Likelihood and Bayesian Spatial Autoregressive Model 
Estimates4. 

 OLS Maximum Likelihood Hetroscedastic Prior 
Variable Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic 

Inpt 1.7095 4.8177 1.5140 4.7266 1.3108 3.4910 
LINCOME -0.1096 -3.3138 -0.0996 -3.3454 -0.0828 -2.3052 
LPOP 0.0090 0.8819 0.0064 0.6977 0.0114 1.1857 
PERBACH -0.8337 -3.3819 -0.7129 -3.2303 -0.6181 -2.2904 
PERIND -0.0386 -1.2863 -0.0263 -0.9787 -0.0233 -0.7276 
PERAGR -0.1205 -2.8621 -0.1028 -2.7281 -0.1101 -2.4743 
PERMAN -0.2083 -3.0859 -0.2137 -3.5368 -0.1754 -2.5812 
HERFINDAHL -0.1539 -3.1329 -0.1539 -3.4934 -0.1092 -2.0522 
PERFEM -0.2468 -1.5209 -0.2464 -1.6958 -0.1555 -0.9235 
GROWTH 0.0468 1.7223 0.0412 1.6939 0.0175 0.6112 
WGROWTH 0.0248 2.6764 0.0178 2.0955 0.0137 1.5156 
PERYNG -0.4075 -2.5855 -0.3538 -2.5021 -0.3075 -1.8637 
PEROLD -0.3671 -2.0661 -0.2981 -1.8736 -0.3596 -1.8225 
Rho n.a. n.a 0.4190 4.3671 0.4671 3.6151 

R2 0.4946  0.5481  0.5204  
Adjusted R2 0.4405  0.4997    
Sigma2 0.0012  0.0010  0.0008  
Log-likelihood n.a. 299.3181   r = 4  

 
absolute terms. Thus, it appears that the incorporation of Bayesian techniques to 
make the results more robust has led to some changes in the estimated 
coefficients with these changes providing a strong justification for the use of this 
methodology.  

Additionally, the results indicate that moving from the OLS through to the 
Bayesian version of the spatial autoregressive model has seen the significance of 
some of the variables change. In particular the variable GROWTH while 
significant at the 10% level in the OLS model is insignificant in the maximum 
likelihood and Bayesian versions of the spatial autoregressive model. The 
variable WGROWTH is significant at the 5% level of significance in the OLS 
model but its significance declines to 10% in the maximum likelihood version of 
the spatial autoregressive version of the model and then becomes insignificant 
even at this level in the Bayesian version of the spatial autoregressive model. 
Lawson and Dwyer (2002) note that strong regional growth does not necessarily 
mean that regional unemployment rates will decline. They find that the regions 

                                                           
4 The Bayesian model in this table has been derived using 3,500 passes through the Gibbs 
sampler with the first 1,100 used to burn in the estimates.  It is important in applying 
Bayesian techniques to ensure that the process has converged to a stable solution.  A 
discussion of the convergence diagnostics for the estimation of the heteroscedastic model 
is presented in Appendix 1. 
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with strong employment growth over the 1986-96 period tended to also have 
experienced high regional unemployment rates. This result suggests that policies 
aimed at stimulating regional growth with the intention of reducing regional 
unemployment are not necessarily going to achieve their objective, and are not 
supported at all by the Bayesian version of the model presented in Table 4.  

The two variables capturing the age structure of the labour force, while 
significant at the 5% level in the OLS and Maximum likelihood model can only 
be accepted as significant in the Bayesian version of the model at the 10% level. 
Both of these variables have negative coefficients, this is in contrast to the 
conclusions of Metcalf (1975) who believed that younger workers were more 
inclined to leave the workforce and contribute to frictional unemployment. 
Metcalf (1975) also found that the coefficient of the proportion of the labour 
force made up by older workers was positive as these workers tend to have a 
longer average duration of unemployment. The findings of Metcalf (1975) in 
conjunction with the significance and sign of the coefficients of PERYNG and 
PEROLD in the Bayesian model suggests that it is difficult to support the idea 
that the age structure of the labour force is a significant factor in explaining 
regional unemployment rate disparities in Queensland. 

Some of the results presented in Table 4 are surprising. For example, in none 
of the estimated equations are the variables PERIND and PERFEM significant. 
This indicates that, when the other variables are taken into account, these 
variables do not influence the unemployment rate experienced by a region. The 
negative coefficient on HERFINDAHL, the Herfindahl index of industrial 
concentration, is also surprising and suggests that regions with a less diverse 
industrial base experienced lower rates of unemployment during 1996. This is 
contrary to mainstream regional economic theory concerning the effect of 
industrial diversity, with Malazia and Shanzi Ke (1993) noting that it is generally 
believed that regions with higher industrial concentration are more likely to have 
higher unemployment rates than industrially diverse regions. These authors 
suggest that regions with greater diversity are more likely to be able to absorb 
adverse economic shocks and so, all things being equal, should have a lower 
unemployment rate than the more industrially concentrated regions. This seems 
contrary to the findings in this study and can perhaps be attributed to the fact that 
higher levels of industrial concentration may also be associated with a more 
specialised labour force or a thinner labour market as is associated with smaller 
regional economies. Consequently, the loss of a job may mean that the chances 
of finding a similar job are increased by moving across regional boundaries, 
perhaps to the larger regions of Queensland. For this reason, smaller regions with 
more concentrated industrial bases may experience lower rates of 
unemployment. 

For the remaining significant variables, the signs of the coefficients are 
negative in all cases. For the variable LINCOME this suggests that, all things 
being equal, regions with higher average incomes are associated with lower 
unemployment rates. One explanation for this is that the average income may be 
picking up effects due to regional industry mix not captured by the variables 
included to capture these effects. This explanation seems to be supported by a 



Regional Variation in Queensland’s Unemployment Rate 343 

 

simple regression to explain LINCOME that includes UERATE and a number of 
other explanatory variables from the models in Table 4. The results of this 
exercise suggest that the rate of unemployment in a region is not significant in 
explaining regional income variation while variables capturing differences in 
regional industrial structure and demographic characteristics, including 
education, are significant. 

For the variable PERBACH, the result suggests that regions with a higher 
proportion of the population with bachelor or post bachelor qualifications tend to 
experience lower rates of unemployment. The size of the coefficient indicates 
that, on average, an additional 1.62 percentage point increase of the population 
with a bachelor or post bachelor qualification is associated with a 1 percentage 
point lower rate of unemployment. 

The negative coefficients on PERAGR and PERMAN indicates that regions 
with larger shares of the labour force employed in agricultural and 
manufacturing industries tended to experience lower rates of unemployment. 
This result may indicate that employment had grown relatively strongly in these 
industries in the period leading up to the census. An alternative explanation for 
PERAGR is that regions with relatively large shares of their labour force in this 
industry tended to be in the sparsely settled western and far northern regions of 
Queensland and thus, this variable may be picking up some negative amenity 
effect associated with small, isolated regions.  

6. CONCLUSION 

The results from the tests for spatial dependency presented in Table 3 suggest 
that this is a problem present in the data. Furthermore, in the models presented in 
Table 4 the coefficient for the spatially lagged dependent variable is significant. 
These results suggest that spatial effects are important and need to be 
incorporated into the estimation procedure. The results presented in this analysis 
tend to suggest that the spatial autoregressive model is the most appropriate for 
the data being analysed.  

The acceptance of this finding has at least two implications. Firstly, Lesage 
(1999) notes that OLS estimators are biased and inconsistent in the face of 
sample data containing spatial dependence. The actual changes to the estimated 
coefficient values between the OLS estimate and the two versions of the spatial 
autoregressive models are considerable when viewed in percentage terms. 
Secondly, and perhaps of more significance to policy makers, are the 
implications of the inclusion of variables to capture the spatial dependence 
uncovered by the tests presented in Table 3. In the two versions of the spatial 
autoregressive model presented in Table 4, ρ , the coefficient of the spatially 
lagged unemployment rate is significant. This suggests that a policy designed to 
reduce unemployment in one region will have flow-on effects to neighbouring 
regions. These regions unemployment rates, in turn, become an explanatory 
variable in the unemployment rates of their neighbouring regions; thus, changes 
in their unemployment rate will have further flow-on effects. In this way, 
policies affecting any one region will be transmitted to neighbouring regions. 
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This suggests that regional employment/unemployment policy may have 
wider implications than suggested by the simple OLS model presented in Table 
4. In particular this model failed to take into account spatial dependency and 
spatial spillover effects. These effects can only be incorporated using techniques 
from the developing field of spatial econometrics. 
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Appendix 1. Convergence Criteria for the Bayesian Estimation of the Spatial 
Autoregressive Model 

It is important in applying Bayesian techniques to ensure that the process has 
converged and a number of diagnostic tests have been developed to determine if 
the sample size is large enough to ensure a stable solution for the problem in 
question. Lesage (1997) notes that for simple models, convergence of the Gibbs 
sampler tends to occur quite rapidly. One approach to monitor convergence is 
provided by a series of convergence diagnostics including autocorrelation 
estimates, Raferty and Lewis (1992) diagnostics, MCMC diagnostics and 
Geweke’s (1992) numerical standard errors. In Table A1, two sets of diagnostics 
are provided, these being the autocorrelation estimates and the diagnostics 
proposed by Raftery and Lewis (1992). 

To interpret these diagnostics some explanation is required. In time series, 
autocorrelation estimates provide an indication of how much independence exists 
in the sequence of ρ  and σ  parameter draws. A high degree of autocorrelation 
indicates that more draws may be required to achieve a sample of sufficient size. 
The results presented in the top half of Table 6 indicate that the draws for the 
parameter ρ  exhibit large autocorrelations at lag 1 but then tail of rapidly at lags 
5, 10 and 50. The autocorrelation structure for σ  shows a smaller value at lag 1 
and also tails of rapidly. 

An alternative approach has been proposed by Raftery and Lewis (1992) who 
designed a set of diagnostics to determine the length of the number of draws 
required based on some predetermined view of the desired accuracy of the 
posterior summaries desired by the user. The methodology designed by Raftery 
and Lewis (1992) requires that the user specifies three pieces of information, 
with the first being the quartiles of the marginal posteriors the user is interested 
in. This is generally set at 2.5% because this provides the basis for a 95% 
interval estimate. The second piece of information is the minimum probability 
needed to achieve the accuracy goals. In this study this has been set at 95%. 
Finally, the user is required to specify how much accuracy is desired in the 
estimated quartiles. In this implementation this has been set at 2% because 
Raftery and Lewis (1992) specify this using the area to the left of the reported 
cumulative density function. Setting this at 2% with a nominal reporting based 
on a 95% interval should result in posterior values that lie between 0.93 and 
0.97.  

In the literature, it is suggested that a number of the initial draws should be 
discarded, these are referred to as the ‘burn-in’ draws for the sampler. Starting 
from arbitrary parameter values makes it unlikely that the initial draws come 
from the stationary distribution needed to construct posterior estimates. Another 
practice followed by researchers involves saving every third, fifth, tenth etc, 
draw since the draws from a Markov chain are not independent. This practice is 
labelled thinning. The results presented in Table 6 suggest that the thinning 
estimate required by the Raftery and Lewis (1992) diagnostics is 1 which is  
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Table A1. Convergence Diagnostics from Bayesian Implementation of Spatial 
Autoregressive Model. 

Markov Chain Monte Carlo Autocorrelation Estimates  
Variable  Lag 1 Lag 5 Lag 10 Lag 50 
Rho  0.666 0.017 -0.052 -0.018 
Sigma  0.190 0.032 -0.026 -0.019 
Raftery-Lewis Diagnostics 
Variable Thin Burn Total (n) (Nmin) I-stat 
Rho 1 10 2830 937 3.020 
Sigma 1 10 2830 937 3.020 
 
consistent with the fact that the autocorrelation estimates tail of rapidly for both 
ρ  and σ . The third column reports that only 10 draws are required for the 
‘burn-in’, which is quite small. The forth column shows the total number of 
draws needed to achieve the desired level of accuracy for each parameter. This is 
given as 2830; inside the 3500 used in the estimation presented in Table 4. The 
Nmin in the fifth column represents the number of draws that are required if the 
draws represented an iid chain, which is possibly not true in the current case 
because of the observed autocorrelation structure. Finally the I-statistic in the 
final column is the ratio of the fourth and fifth columns. Raftery and Lewis 
(1992) suggest that values much above 5 are indicative of convergence problems 
and may suggest that more draws should be carried out, this is obviously not a 
problem in this exercise. 





 

 


