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ABSTRACT: This paper provides an analysis of the variation in Queensland
regional unemployment rates. This is done using data from the 1996 Census of Population
and Housing. A preliminary analysis suggests that the spatial variation in the
unemployment rate has exhibited a high degree of stability and that this variation is not
randomly allocated over geographic space. The econometric investigation seeks to explain
the underlying variables responsible for this variation. This analysis employs spatial
econometric techniques in an attempt to determine the significance of various economic
and demographic factors in determining differences in regional unemployment rates. It is
suggested that these techniques are more appropriate in cases where there is a possibility
that variables may be related through geographic proximity, as is generally the case with
studies based on regional data.

1. INTRODUCTION

Observed disparities or differentials in unemployment rates are a well
documented phenomenon with a relatively large body of literature, following
Thirlwall (1966), discussing the nature of these. Marston (1985) notes that,
broadly speaking, there are two explanations of these disparities, these being the
equilibrium and disequilibrium explanation. The equilibrium explanation of
regional unemployment differentials assumes that labour mobility is relatively
free between areas. In this situation, excess labour in the area will vanish quickly
unless workers are compensated in some way that induces them to stay
voluntarily. For this reason, any persistent geographic unemployment
differentials are not evidence of uneven labour demand, but reflections of
workers underlying preferences for certain areas. In contrast, in the
disequilibrium explanation, economic and social barriers may separate local
labour markets. If these barriers restrict mobility severely, then weak labour
demand in one geographic area will raise the unemployment rate above the level
in areas with strong labour demand.

These radically different explanations purport to account for unemployment
differentials between areas. Additionally, Trendle (2001) notes that public
policies based on either one of these explanations will contradict polices based
on the other. In the disequilibrium explanation, for example, there is a role for
regionally targeted policy. Armstrong and Taylor (1993) presume that regional
unemployment disparities in Britain are the result of slow adjustment processes;
in this case regionally targeted employment programs can have a long term or
permanent effect. However, in the case where disparities are the result of
equilibrium factors, there is no role for regionally targeted employment
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programs. In the case of the equilibrium explanation, Marston (1985) notes that
economic disturbances or shocks may move actual regional differentials away
from their mean values, but such disequilibrium movements are short lived, and
regional differentials will converge back to their equilibrium means. In this case,
regionally targeted programs will merely attract more workers into an area, until
the initial unemployment differentials reappear.

The aim of this paper is to determine the factors that contribute to these
observed disparities in regional unemployment rates. The starting point for this
analysis is data available from the 1996 Census of Population and Housing.
Regional data from the Community Profile component of this database provides
the core of the analysis. This database includes a time series component for the
1986, 1991 and 1996 censuses based on the place of enumeration, along with a
collection for 1996 based on the place of usual residence, with this latter dataset
forming the basis of the econometric analysis. However, some preliminary work,
in particular a descriptive analysis of the regional data, is presented in section 3
using the time series collection. While this data is not ideal, it provides a useful
starting place for the analysis of regional unemployment disparities as it allows a
comparison of regional unemployment by Queensland Local Government Areas
(LGA’s) over three successive censuses.

Section 2 provides a brief introduction to spatial econometrics, the technique
used in this study. This is followed in Section 3 with a preliminary investigation
of the data. Section 4 provides an explanation of the variables likely to influence
regional unemployment rates. This section summarises some of the literature on
regional unemployment disparities noting the variables thought responsible for
these disparities. This is followed in Section 5 by the results of the estimation of
a relationship between regional unemployment and the explanatory variables. A
brief conclusion is provided in Section 6.

2. AN INTRODUCTION TO SPATIAL ECONOMETRIC ANALYSIS

Studies incorporating the use of small area data in cross sectional analysis are
something of a rarity in Australia with a notable exception being Lawson and
Dwyer (2002) which looked at regional labour market adjustment. In the
international literature there are numerous studies that have attempted to explain
disparities in regional unemployment rates using cross section data. These
include Metcalf (1975), Marston (1985), Partridge and Rickman (1995 and
1997), Malizia and Shanzi Ke (1993) and Molho (1995).

All but the last of these employed standard regression techniques, while
Mohlo (1995) on the other hand, employs techniques from the developing field
of spatial econometrics. These techniques are ideally suited to the study of
regional data and are employed in this study. The importance of taking these
effects into account was reviewed extensively by Anselin (1988a) and since then
a growing literature attests to the importance of the problem and the
consequences of errors in misspecification that can occur if spatial issues are
ignored in cross sectional data analysis involving geographical units.

The field of spatial econometrics has developed only relatively recently with
one of the early contributors being Cliff and Ord (1973) where the idea of spatial
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autocorrelation was introduced. Positive spatial autocorrelation occurs when
similar values for a variable are clustered together in space while negative
autocorrelation appears when dissimilar values are clustered in space. Lesage
(1997) notes that OLS estimators are biased and inconsistent in sample data that
contains spatial dependence. Spatial autocorrelation also implies the absence of
independence among observations in cross-sectional data and can be taken to
mean the existence of a functional relationship between what happens at one
point and elsewhere.

Magalhaes et al. (2000) suggest that the problem may originate as a
measurement problem stemming from the fact that the data has been divided into
artificial spatial units that do not coincide with the real spatial dimension of the
phenomenon, or alternately, spatial autocorrelation can originate as a result of a
true spatial interaction among the variables. There may also be problems that
stem from the lack of homogeneity of the spatial units themselves. Different
units (i.e. cities, rural regions, etc) have different shapes, densities and sizes
which can generate measurement errors that can cause heteroscedasticity, or in
the case of spatial econometrics, spatial heterogeneity. Anselin and Rey (1997)
and Magalhaes et al. (2000) note that it is not easy to differentiate between
spatial autocorrelation and spatial heterogeneity. They suggest that in a cross
sectional setting, the two effects might be equivalent. Generally speaking,
whatever the source of the spatial error process, it is dealt with in the same way
i.e., the explicit inclusion of space in the estimated equation.

In spatial econometrics the notion of space is introduced into the estimation
process through the spatial weight matrix. This matrix, usually denoted W, is
used to capture the adjacency patterns of regional units. In the simplest case, a
symmetric matrix is defined by having the element (i, j) set equal to 1 if i and j
are neighbours and 0 otherwise. By convention, the diagonal elements are set to
zero, w; = 0. Before use in estimation the weight matrix is standardised, denoted
by the superscript s, with each of the non-zero elements being defined as
Wi =W; /2w, . In this matrix, the elements of the rows sum to one. Besides
facilitating the interpretation of the weights as an averaging of neighbouring
values, this manipulation ensures the comparability between models of the
spatial parameters in many spatial stochastic processes (Anselin and Bera, 1998).
There are other more complex specifications of weight matrices based, for
instance, on the inverse of distance from a capital city or on economic variables
such as known trade flows.

Magalhaes et al. (2000) note that the main reason for the use of the spatial
weight matrix is to associate a variable, at one point in space, to the observation
of the variable in other spatial locations. In contrast to time series, where the
relation in time can be expressed by the simple notion of a lag operator L, where

L’y =y, shiftsy;, s periods back in time, in space the problem becomes more

complicated. The additional complication stems from the fact that there are many
possible directions over which the spatial shift operator can be applied. One
solution that has been offered to this problem is the use of the concept of a
spatial lag operator L°. The idea is to use a weighted sum of the values of
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neighbouring units. In matrix notation this can be written as:
Ly=W"’y @

It is also possible to define higher order spatial lag operators. By multiplying W
by Wy is equivalent to generating Wy, a second order spatial lag.

The lack of a unique procedure to select a weight matrix has generated
alternative approaches to address the problems caused by the misspecification of
such a matrix. Griffith (1996) notes that the statistical qualities of the maximum
likelihood estimators are affected by misspecification problems, creating
problems for spatial statistical analysis. The same author provides some general
guidelines that can be applied when specifying a weight matrix. In particular,
Griffith (1996) considers it better to posit some reasonable geographic weight
matrix than to assume all entries are zero, i.e., ignoring spatial dependence is not
the best alternative. In addition, the same author also suggested that a simple
specification, such as a first order contiguity matrix is, in many situations, to be
preferred to more complicated spatial structures, such as distance decay.

A number of alternative frameworks exist for dealing with the problem of
spatial autocorrelation. The most comprehensive framework is the general spatial
model, shown in Equation (2);

y=pWy+X5+u
u=W,u+e @)
e~N(0,67%1,)

Where y contains a vector of cross sectional dependent variables and X
represents an Nx K matrix of explanatory variables. W; and W, are known
Nnxn spatial weights matrices, usually containing contiguity relations or
functions of distance.

From this general model the imposition of restrictions can be used to derive
additional models. For example, setting W, = 0 in Equation (2) produces a spatial
autoregressive model shown in Equation (3). This model is analogous to the
lagged dependent variable model in time series. Here we have an additional
explanatory variable in the X matrix to explain variation in y over the spatial
sample of observations.

y=pWy+Xp+e
e~N(0,0°1,)

Letting W; = 0 from Equation (2) results in a regression model with spatial
autocorrelation in the disturbances as shown in Equation (4). This model is
generally known as the spatial error model.

y=Xf+u
pu=W,u+e (4)
&~ N(O,O‘2,|n)

©)
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The spatial autoregressive model shown in Equation (3) is clearly related to a
distributed lag interpretation, in that the lagged dependent variable, Wy, can be
seen as equivalent to the sum of a power series of lagged dependent variables
stepping out across a map, with the impact spillovers declining with successively
higher powers of p. This may be termed a structural autoregressive relationship,
and one would expect it to be based on economic processes. In contrast, the
spatial error model presupposes a shared spatial process affecting all of the
variables, and is more often interpreted as indicating missing variables.

A recent line of research in the analysis of spatial data has focussed on how
to establish the characteristics of the dependence between observations, whether
dependence can be demonstrated and how it ought to be represented. One of the
earliest tests for spatial autocorrelation of the residuals of a regression
relationship was the Moran | statistic presented in Cliff and Ord (1973), this tests
takes the form:

e'We
= 5
oo (5)

where e is a nx1 vector of regression residuals from the OLS estimation of an
equation. Inference for this test is carried out on the basis of an asymptotically
normal standardized z-value, obtained from subtracting the expected value and
dividing by the standard deviation.

Anselin et al. (1996) note that while the Moran | statistic is a very powerful
test it does not provide any information about the nature of the spatial
relationship. This has lead to the development of new tests, these being the
Lagrange Multiplier spatial error and lag tests and robust versions of these tests.

The Lagrange Multiplier spatial error test (LM-ERR) was developed by
Burridge (1980). This test has the form:

n 2
LM — ERR = M (6)

1

where s>=e'e/n, and T, —tr(W,W, +W,?) , with tr as the matrix trace operator.

This statistic is distributed as »? with one degree of freedom.

The robust version of the spatial error tests (RLM-ERR) owes its origin to
Bera and Yoon (1992). This test is robust to local misspecification in the form of
a spatial lag term and is computed as:

(e'Wle/s2 ~TYRI ,_z) (W, y/s? )2

RLM — ERR = b
-1 R,

U]

with:

(RY,_p) "t = [T+ W, XB) M W, Xp)] ®)
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where W;Xg is a spatial lag of the predicted values from the initial OLS
regression and M =1 — (X (X'X)™X is the projection matrix. Just as with the

LM-ERR this statistic is distributed as 2 with 1 degree of freedom.

The Lagrange Multiplier test for spatial lag dependence (LM-LAG) is due to
Anselin (1988b). This test statistic is derived as;

(e'W,y/s?)
RI, )

again, this statistic is distributed as x> with 1 degree of freedom.

The robust version of this test (RLM-LAG) is the counterpart of the robust
version of the spatial error test and again owes its development to Bera and Yoon
(1992). This test allows for the testing of spatial lag dependence robust to local
misspecification in the form of a spatial moving average process and is defined
as:

LM - LAG = )

(e'Wy/s’ —e'We/s’)’
RLM — LAG = 2 (10)
(RI ,-T)

with the statistic again distributed as y* with 1 degree of freedom.

These tests allow the researcher to determine the appropriate way in which to
incorporate spatial dependence into the estimated relationship. Anselin, Florax
and Yoon (1996) conduct Monte Carlo experiments on these tests and conclude
that they have good power for detecting spatial dependence and also provide
insight into the way this spatial dependence should be modelled. This is an
important consideration, as Anselin (2001) demonstrates. Some forms of spatial
interaction such as that represented by a spatial autoregressive model imply that
changes or shocks to the model in one region have a global effect or will, in our
case alter all regional unemployment rates with the amount of the effect being
inversely related to the distance from the region receiving the initial impact. On
the other hand, the spatial dependencies represented by the spatial error model
have only local effects, flowing only to immediate neighbours.

-

3. UNEMPLOYMENT DSPARITIES IN QUEENSLAND - A
DESCRIPTIVE ANALYSIS

The starting point for this analysis is the small area data from the 1996
Census of Population and Housing, and in particular the Community Profiles
component of this database. This database includes a time series component,
incorporating small area data from the 1986, 1991 and 1996 censuses. Ideally,
data collected on a usual residence basis would be desirable. Unfortunately, the
time series data refers to the place of enumeration, or place staying on the night
of the census, while not ideal, this provides a useful starting place for the
analysis of regional unemployment disparities.
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Table 1. Descriptive statistics: Regional Unemployment Rates, 1986 to 1996.

1986 1991 1996
Average UE rate 10.10 9.96 8.47
Highest 24.03 28.59 23.56
Lowest 0.00 2.57 1.04
Range 24.03 26.03 22.52
Sample SE 4.80 4.83 4.57
Correlation 0.75 0.72
Speamans rank correlation stability -8.64 -8.11

Table 1 provides summary statistics for the regional unemployment rates of
Queensland over the period 1986 to 1996. This table shows that the average
unemployment rate has decreased over the ten year period from 10.1% in 1986 to
8.5% in 1996, a decrease of 1.6 percentage points. The range of unemployment
rates has also decreased marginally from 24.0% in 1986 to 22.5% in 1996.

This small decrease in both the average and the range of unemployment rates
has been accompanied by a high level of stability in the correlation of regional
unemployment rates, with both the correlation coefficients and the Spearman’s
test of rank order stability being significant for unemployment rates between
each census period®. This suggests that regions have retained their relative
ranking, with high unemployment rate regions remaining high unemployment
rate regions over the period while regions with relatively low unemployment
rates have retained their status as low unemployment rate regions. This suggests
a high degree of persistence in the observed unemployment structure.

An alternate perspective on regional unemployment is provided by the Moran
scatter plots provided in Figure 1. These figures plot each LGA’s difference from
the average unemployment rate against their spatial lag, i.e., a weighted average
of the unemployment rates of neighbouring regions. The four different quadrants
of the Moran scatter plot identify four types of spatial association between a
LGA and its neighbours: quadrant 1 shows low unemployment rate LGA’S
surrounded by high unemployment rate neighbours; In quadrant 2 high
unemployment LGA’s with high unemployment neighbours appear; quadrant 3
records low unemployment rate LGA’s surrounded by low unemployment rate
neighbours while quadrant 4 shows high unemployment rate LGA’s with low
unemployment rate neighbours.

Concentrations of observations in the top right hand corner and bottom left
hand corner indicate that regions with high unemployment rates tend to be
adjacent to regions with high unemployment rates and regions with low
unemployment rates are likewise clustered together in space. The trend line
through the scatter diagrams suggests that this spatial clustering of regions

! These correlation coefficients refer to the regional unemployment rate for the year
referred to by the specific column’s correlation to the 1986 regional unemployment.
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Figure 1. Moran Scatterplot — Regional Unemployment Rates.

Table 2. Moran | Tests for Spatial Autocorrelation.

Test Moran |
Value 6.1593
Marginal probability 0.0000

sharing similar unemployment rates is significant, or that variations in regional
unemployment do not occur randomly over Queensland’s geographic space. This
conclusion is confirmed by the test results shown in Table 2 where the results of
the application of the Moran | test are presented.

In this case, the Moran I-statistic takes the form;

n 2?:12?:1Wij (x; =X)(x; =X)
I = (11)

PIID I > (X —X)?

The Moran | statistic is tested using analytical expectations and variances
based largely on the neighbourhood structure assumed in the spatial weighting
matrix and are asymptotically distributed. The significance of the Moran |
statistic is assessed by a standardized z-score that follows a normal distribution
and is computed by subtracting the theoretical mean from | and dividing the
remainder by the standard deviation.

4. AMODEL OF LOCAL UNEMPLOYMENT

As noted in Section 2 there have been many cross sectional studies
attempting to determine the variables responsible for the variation in regional
unemployment rates. The variables that have been found significant in
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explaining regional variation in unemployment rates can be classified into three
categories, these being; industry or product market variables, demographic
variables and regional factor endowments.

4.1 Industry Variables

A number of industry variables have been found to be significant in
explaining differences in regional unemployment rates. These variables include
the regional industry structure, in particular the extent of industrial concentration
within the regional economy and shares of employment within particular
industries within the regional economy. There are a number of ways in which
industrial concentration can be measured; Malazia and Shanzi Ke (1993) for
example, use the Entropy index of industrial concentration while Partridge and
Rickman (1995) incorporate the Herfindahl index of industrial concentration.

Generally it is considered that regions with a higher measured industrial
concentration are likely to have higher unemployment rates than industrially
diverse regions. Malazia and Shanzi Ke (1993) suggest that regions with greater
diversity are more likely to be able to absorb adverse economic shocks and so,
all things being equal, should have a lower unemployment rate than the more
industrially concentrated regions. In this study, the variable HERFINDAHL,
being the Herfindahl index of industrial concentration has been incorporated to
determine if regional variation in employment concentration across industries
has influenced the rate of unemployment experienced in regions. This index has
been calculated for all regions using the first division Australian New Zealand
Standard Industry Classification (ANZSIC) data provided in the CPROFILE
database. This data provides a disaggregation of 17 industry categories.

Employment concentrations in particular sectors of the economy have also
been found to have a significant influence on variations in the regional
unemployment rate. Different industries may be at different stages of their
economic cycle, thus, regional unemployment rates may vary because of the
variations in the economic bases of the regions. In this study this is controlled for
through the inclusion of variables capturing the shares of employment in various
sectors of the economy. The variables included to capture the effect of the
variation in regional economic bases consisted of; the percentage of the labour
force employed in agriculture (PERAGR), in addition to the percentage of the
non-agricultural labour force employed in manufacturing (PERMAN), the
percentage of the non-agricultural labour force employed in services excluding
Public administration and defence and Electricity, gas and water (PERSER) and
the percentage of the non-agricultural labour force employed in mining
(PERMIN). In the final model, PERSER and PERMIN were excluded on the
basis that they were insignificant in all preliminary equations.

Differences in regional incomes are also thought to be significant in
explaining regional variations in unemployment rates. Partridge and Rickman
(1995) note that the association between wages and unemployment may be
ambiguous. For example, these authors note that there may be a hedonic wage-
unemployment tradeoff or there may be wait unemployment where workers
queue for high wage jobs. In this study the natural log of average regional
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income is incorporated (LINCOME). Data to construct this variable is available
from the Australian Taxation Office and following Mohlo (1995) it relates to the
preceding year in order to avoid problems of endogeneity associated with using
the income variable available in the CPROFILE dataset.

A final group of variables that may influence regional unemployment rates
that fall into this category relate to the growth of the regional economy. The
growth of the regional labour market will act to reduce unemployment, it may
also attract additional labour into the region so that the final effect on the
regional unemployment rate is not clear. In this study two variables are
incorporated, these being the regional labour market growth rate over the
intercensal period 1991-96 (GROWTH) and the average rate of growth of
neighbouring regions (WGROWTH) derived by multiplying GROWTH by the
row standardized spatial weight matrix (W).

4.2 Demographic Variables

A number of demographic variables have also been found to be significant in
explaining differences in regional unemployment rates. These variables include
the education levels of the population in a region, the proportion of the labour
force comprised of females and the proportion of migrants, especially from non-
English speaking backgrounds. In this study the percentage of the population
with bachelor degrees or above (PERBACH) and the proportion of the labour
force made up by females (PERFEM) are included. Initially, attempts were made
to incorporate variables that measured the extent of migration into regions, from
both interstate and overseas, but in all cases these variables were found to be
insignificant.

In U.S. studies (see, for example, Malazia and Shanzi Ke 1993, and Partridge
and Rickman 1995, and 1997), the proportion of the population of African origin
is also found to be a significant determinant of differences in regional
unemployment rates. In this study the proportion of the population of indigenous
origin (PERIND) is included, it is likely that indigenous Australians have a more
difficult time finding work, consequently the unemployment rate for this
demographic group is likely to be higher. For this reason, it might be expected
that regions with a high proportion of the population from an indigenous
background would have a higher unemployment rate.

Other studies have incorporated variables to measure the shares of the labour
force made up by different age groups into the analysis of regional variation in
unemployment. For example, Metcalfe (1975) notes that young and old workers
experience different patterns of unemployment to prime age workers. Regions
with different age distributions of the labour force will, for this reason,
experience different rates of unemployment. If workers of certain age groups are
more or less likely to leave high unemployment regions than other groups this
may result in a strong statistical relationship between the proportion of the labour
force comprised of these age cohorts and the unemployment rate. In this analysis
two age variables were tested, these being the proportion in the 15 to 24 age
cohort (PERYNG) and the proportion in the 54+ age cohort (PEROLD).
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4.3 Regional Factor Endowments

In addition to economic and demographic variables, a number of region
specific variables are thought to influence the unemployment rate. These are
variables that influence the amenity value of regional economies. Marston (1985)
notes that differences in the amenity value of a region are thought to make a
region a more or less desirable place to live. Consequently, it is suggested that
persons may be prepared to live in certain regions that have a relatively high
level of these amenities and accept a higher risk of remaining or becoming
unemployed. Thus, higher levels of desirable regional amenities may be
associated with higher unemployment rates. The particular variables that make
up this category range from the climate of the region, through to house and land
costs and the availability of education and health care facilities.

Some studies, including Partridge and Rickman (1995 and 1997) incorporate
regional population to capture regional amenity values. These authors suggest
that regions with larger populations may have amenity values due to access to
more schools, entertainment, health care facilities etc. Additionally, it could be
that a higher population has negative regional amenity values associated with
increased congestion and pollution. In this study the natural logarithm of
population (LPOP) is included in the estimated relationships. It is hypothesised
by Partridge and Rickman (1995 and 1997) that, other things being equal,
regions with a higher population will have a higher amenity value, thus it is
expected that the coefficient of this variable will be negative as persons are
prepared to accept higher rates of unemployment in return for greater local
amenity values.

Additional variables that have been tested in this study to capture the effect of
region specific amenities comprise the population density and a dummy variable
for proximity to the coast. Both of these variables were tried in the initial stages
of this study but found to be insignificant.

5. SPATIAL ECONOMETRIC ANALYSIS OF QUEENSLAND
UNEMPLOYMENT

The use of variables to capture the effect of differences in regional economic,
industrial and demographic characteristics in a purely cross section study may, as
noted by Molho (1995), be considered equivalent to picking up the regional
fixed-effects which appear in a pooled cross-section/time-series study. These
fixed effects influence the underlying equilibrium pattern of employment rates
that would be expected to exist in the absence of any demand shocks. For this
reason, the modelling undertaken in this study could be seen as attempting to
explain the equilibrium distribution of regional unemployment rates within
Queensland.

The first stage in the process of determining the significance of spatial
autocorrelation is to conduct a series of tests on the residuals of the OLS version
of the model incorporating the variables discussed in section 4. A wide range of
tests is available, including the Moran I statistic, Lagrange Multiplier (LM) error,
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Table 3. Tests for Spatial Autocorrelation in the Residuals of the OLS Equation?.

Test Moranl LM LMLag RLM RLM

Error Error Lag

Value 2.2324 3.0814 9.8770 1.8771 8.6726
Marginal Probability 0.0330 0.0792 0.0017 0.1707 0.0032

LM lag and robust versions of these latter two tests. The results of applying these
tests to the residuals of the OLS equation are presented in Table 3.

The results of these five tests suggest that we can reject the hypothesis of
spatial independence due to the small marginal probabilities for the Moran | test
and the LM lag and robust form of the LM lag test, and conclude that the
residuals from the OLS estimation exhibit spatial dependence, best represented
by the spatial autoregressive model.

The Moran | test is perhaps the most commonly used specification test for
spatial autocorrelation. Anselin et al. (1996) note that this test consistently
outperforms other tests in terms of power in simulation results. A limitation of
the test however, is that it provides no indication of whether the spatial
autocorrelation present in the residuals is due to a true spatial process, best
represented by a spatial autogressive model, or an error process, best represented
by a spatial error model. On the other hand, the Lagrange Multiplier tests,
especially the robust tests provide a means of discriminating between the spatial
autoregressive or error model.

The strategy used in the model selection process in this study has been to
estimate several versions of the models presented in Equations (2) through (4).
These models included both spatially lagged dependent variables, spatially
lagged error terms or both spatially lagged dependent variables and error terms.
In addition, 1% and 2" order spatial weight matrices were tried. All weights
matrices used were based on t