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ABSTRACT:  This paper demonstrates a novel approach to small-area 

population projection that combines cohort-component projections, at the district 

level, with grid-based land use projections at a fine (four-hectare) geographical 

scale. Residential population is directly estimated in the land use model, while a 

separate statistical model is used to link non-residential population to non-

residential land use (by type). The model projects future small-area populations 
using projections of future land use from the land use model. Four data and model 

specifications for the statistical modelling are compared. Overall, this model is 

useful because it generates greater stakeholder ‘buy-in’ than black-box or naïve 

approaches. 
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1. INTRODUCTION 
 

   Local government planners, property developers, real estate agents, large 

businesses and other stakeholders need good projections or forecasts of the 

future spatial distribution of population for planning purposes (Foss, 2002). 
Indeed, Myers (2001, p.384) notes that “planning analysts regard 

population statistics as integral to virtually all aspects of planning”. This 

includes planning for future land developments, schools, hospitals, child 
care centres, care services for elderly people, traffic flows, electorate 

boundaries, and so on. In the case of local government, this need for good 

data is often reinforced by legislation that increasingly calls for fiscal 
sustainability. For instance, the recently amended Local Government Act 

2002 in New Zealand, requires territorial and local authorities to engage in 

asset management planning with a fifty-year time horizon. In order to 

develop detailed asset management plans, local governments therefore 
need a good understanding of future population growth, not only in total 

but for particular localities within their districts or regions. 

   The risks to planners of planning on the basis of an inaccurate forecast 
of the future population distribution can be large. An overestimate of future 

population growth for a particular area will induce over-investment in 

infrastructure (such as roads, water and other utilities) with resultant costs 

on the local authority. These costs may be able to be passed onto private 
sector developers but, if not, they will be borne by local ratepayers. On the 

other hand, an underestimate of future population growth will lead to 

infrastructure being insufficient to meet the needs of the population, with 
costs (in terms of congestion or shortages of services) borne by the local 

populations. While accuracy is only one of several criteria on which small-

area population forecasts might be judged (Tayman and Swanson, 1996; 
Tayman, 2011), from the perspective of local authority planners the need 

for accurate and timely population forecasts is clear. 

   A range of government and non-government organisations (typically 

academics or consultants) produce population projections. The projection 
assumptions that will lead to the most accurate forecast of future 

population are unknown (and some might argue, unknowable). This means 

that all forecasts of future population will be subject to error. The 
magnitude of forecast error tends to be substantially larger for areas with 

small populations, in comparison with more populous areas (Cameron and 

Poot, 2011), which poses a particular problem for those interested in the 
distribution of population over small areas. Moreover, the methods for 

projecting population at small-area level are under-developed relative to 

projection methods for larger areas, although research in this area has 
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increased recently (Chi, 2009; Chi et al., 2011). In particular, it is unclear 
whether modellers should adopt a top-down approach to population 

projections (projecting large areas such as the national population first, 

followed by sequentially smaller component areas) or a bottom-up 

approach (projecting small areas first; then deriving projections for larger 
areas by summing the projections of their component small areas). 

   In this paper, a novel approach is adopted that uses a top-down cohort 

component population projection to define a district-level population, and 
then allocates the population spatially to small areas using statistical 

downscaling based on a model of land use. Statistical downscaling refers 

to using statistical methods to interpolate regional-scale variables to 
smaller geographical scales, and is widely used in the climate change 

literature (e.g. see Kim et al. (1984) for an early application). Four different 

model specifications based on land use are developed, and then compared 

with two naïve projections. The remainder of the paper proceeds as follows. 
First, the range of approaches that have been applied to the projection of 

population for small areas are described, and the strengths and weaknesses 

of each approach are outlined. Second, the study area and the projection 
model are described, as well as the method for evaluating the in-sample 

and out-of-sample forecasting performance of the model. Third, the results 

of the evaluation are presented. Finally, the implications of the results for 

the use of similar models in local authority planning are discussed. 
 

2. SMALL-AREA POPULATION PROJECTIONS 

 
   A variety of methods have been applied by demographers and population 

modellers to develop small-area population projections to satisfy planning 

needs. These methods can be generally categorised into four types: (1) 
naïve models, e.g. extrapolation, or growth share models; (2) the 

‘traditional’ demographic cohort component model; (3) statistical methods, 

using data such as building consents; and (4) urban growth modelling 

approaches. While there may be some overlap between these methods, and 
it is possible (and sometimes desirable) to combine approaches, the 

following paragraphs discuss the relative strengths and weaknesses for 

local authority planning of each of these methods separately. 
   Naïve models are essentially simple extrapolations of past populations. 

The simplest of these models involve an assumption of no population 

change (i.e. constant population), linear population growth based on past 
growth trends, and exponential growth (i.e. constant population growth 

rates) based on past growth trends. Slightly more sophisticated are growth 
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share models, which are top-down models where the population is initially 
projected at a higher geographical level, and then that projected growth is 

shared between the different small areas. For example, the total population 

for a state or county may be projected first, and then the growth share 

model used to allocate the state- or county-level population to the census 
tract level. 

   Naïve models tend to perform reasonably well, in terms of forecast 

accuracy, when compared with more sophisticated models (van der Gaag 
et al., 2003). Wilson (2015a) tests a wide array of these naïve models for 

small areas in Australia, England/Wales, and New Zealand. He finds that, 

in terms of individual models, a constant share of population (CSP) model 
works best (smallest error) for England/Wales, and a variation on a 

constant share of growth (CSG+) model works best for Australia and New 

Zealand. Following White (1954), the CSG+ model assumes a constant 

share of growth for those areas that experienced positive population growth 
in the base period (i.e. just before the start of the projection), and no growth 

for areas that declined in population in the base period. Within the class of 

naïve models, more sophisticated models are not necessarily always better. 
For instance, Rayer and Smith (2010) have found linear extrapolation to be 

more accurate than growth share models for sub-county areas in Florida. 

However, naïve models have practical limitations. First and foremost, they 

lack a strong theoretical basis. The purely mechanistic and deterministic 
application of past time trends into the future may be appropriate for small 

areas that have stable and predictable growth paths, but most small areas 

are subject to unexpected changes in population. By ignoring the 
demographic or urban/land use drivers of population change (that the more 

sophisticated models outlined below feature), these models will fail to 

adequately account for changes in these drivers. On a related note, because 
local contextual factors are not incorporated into the model, naïve models 

of population change are difficult to justify to planners or, importantly, to 

elected officials. This is because there are no mechanisms for local policy 

to affect the future population distribution. This can lead to a lack of ‘buy-
in’ from important end-users of the projections. 

   The traditional workhorse of demographic projections is the cohort 

component model (CCM). In the CCM the population is projected by first 
projecting the three components of population change: (1) births, typically 

projected by means of age-specific fertility rates applied to women of 

childbearing ages; (2) deaths, typically projected by means of age-sex-
specific mortality (or its complement, survivorship) rates applied to the 

population of each age and sex; and (3) migration, which may be projected 

in a number of different ways (van der Gaag et al., 2003). 
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   The advantage of the CCM is that all of the demographic drivers of 
population change are explicitly included in the model, because the CCM 

formula is an identity. Depending on the process used for modelling each 

component, other known drivers of population change can be explicitly 

included through their influences on fertility, mortality, and/or migration. 
Because the drivers are included, the CCM is typically intuitively 

understandable for local authority planners and elected officials.  

   However, at small-area levels, the CCM faces significant challenges. 
First, the data necessary for deriving assumptions about future fertility, 

mortality and migration may not be available at small geographical scales 

(Wilson, 2015b). Where these data are available, data quality or precision 
may be so low that it may be difficult to derive robust age-specific rates 

for each component (fertility, mortality, inward and outward migration) at 

local levels (Wilson, 2015b;. Tayman et al., 1998). For instance, age-sex-

specific data are typically required to estimate fertility and mortality rates. 
At the small-area level, the counts of births and deaths that occur each year 

(particularly when you consider age-specific counts) are small and highly 

variable, such that the estimation of fertility and mortality rates becomes 
extremely challenging.  

   Second, despite the promise that incorporating drivers of each 

component (fertility, mortality, migration) holds, most CCM models fail to 

adequately take account of a myriad of socio-economic, infrastructural, 
physical land use and other contextual factors that exert substantial 

influence over the spatial allocation of population and households at 

smaller geographical levels. Typically, these factors are excluded due to 
data unavailability and the inability to reliably forecast them. Contextual 

factors matter much more at the local level, such as the availability of 

suitable land, services and amenities, and the plans of public and private 
land developers (Murdock et al., 1991). In particular, land use and 

availability constraints, planning constraints, and the availability of 

infrastructure are all variables that local authority planners would expect 

to impact on the future population distribution at the small-area level.  
   Of course, the quantitative test of the CCM is whether it outperforms 

other models in evaluations of small-area projections. Unfortunately, past 

studies have shown that CCMs do not outperform simpler methods in 
projecting small area populations (Smith, 1997; Smith and Tayman, 2003). 

Statistical models offer one way to include the important contextual 

variables that are absent from the naïve models, and often missing from 
CCM models. For instance, regression models have become increasingly 

common in small-area projections (Alho and Spencer, 2005), including 
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more recently spatial regression models (Chi et al., 2011). Spatial 
regression models may be preferred over aspatial models because the 

effects of the characteristics and contexts of neighbouring areas may also 

be important drivers of population change in each small area (Chi et al., 

2011), and traditional regression models are unable to account for all of the 
spatial interactions (Lesage and Pace, 2009). For example, Chi et al. (2011) 

used spatial lag models to derive population projections for census tracts 

in Milwaukee, Wisconsin. 
   However, as with the limitation for including more detailed population 

drivers within CCM models, data availability may be a serious issue, and 

all data that is used within the statistical model must also be projected. 
Statistical models also suffer from a range of well-recognised issues, 

including temporal instability of coefficients and over-fitting (Tayman and 

Schafer, 1985). Finally, like CCM models, statistical models have not been 

demonstrated to outperform even simple models of small-area populations 
in terms of forecast accuracy, even when the statistical model includes 

spatial interactions. For instance, Chi et al., (2011) found that their spatial 

lag model for Milwaukee did not unambiguously outperform projections 
derived from simple extrapolation methods. 

   The final category of small-area projection models is models based on 

urban growth modelling approaches, including: (1) Cellular Automata (CA) 

modelling; (2) Artificial neural networks; (3) Fractal modelling; (4) Agent-
based modelling; and (5) Decision-trees modelling. CA modelling involves 

separating each area into a grid of cells, each of which has a number of 

characteristics (which may include population size). In each time step of 
the model, each cell may change its characteristics in response to shifts in 

the characteristics of neighbouring cells and changes in the nature of the 

system as a whole (see also the description of the land use model in the 
following section). These urban growth modelling methods are described 

and reviewed in detail by Triantakonstantis and Mountrakis (2012). The 

advantages of urban growth modelling approaches include a much stronger 

theoretical base than statistical modelling, and that these models are able 
to more explicitly account for the local socio-economic conditions and 

physical and planning constraints at the small-area level. However, the 

limitations of urban growth modelling approaches are similar to those for 
statistical models, including high data requirements. 

   An alternative to applying one of the four approaches above is to 

combine two or more approaches in order to leverage their particular 
strengths, and attempt to address their limitations. One increasingly 

common combined approach involves using demographic projections such 

as CCM models to derive estimates of the future population at a relatively 
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broad geographical scale, then using one of the other approaches to 
systematically downscale or apportion the population to the small-area 

level. Combining two approaches can take account of both the underlying 

demographic processes that drive population change, and the local-level 

conditions that primarily determine the spatial allocation of households and 
people (Wilson, 2015b). Moreover, by combining two methods the 

demographic model is not overextended to a point where the data necessary 

to derive population projection assumptions (fertility, mortality, and 
migration) are not readily available.  

   In the combined approach the method of allocating population between 

small areas becomes the most important determinant of forecast accuracy 
at the small-area level. Land use based models have been used to 

downscale or allocate population to small areas for at least the last two 

decades. Tayman (1996) reports results of a forecast based on a spatial 

interaction land use model for San Diego County. The land use model uses 
place-of-work employment to allocate population, such that the population 

tends to locate closer to their place-of-work, while constraining population 

based on each zone’s capacity to accommodate additional residential 
development. Tayman and Swanson (1996) used similar models for San 

Diego and Dallas-Fort Worth.  

 

3. DATA AND METHODS 
 

Data 

 
   The Waikato Region of New Zealand had a 2013 total population of 

approximately 425 000 (about 10 per cent of the total New Zealand 

population). It has a central main city (Hamilton City) with a 2013 
population of approximately 150 000, two districts that are peri-urban 

(Waikato District and Waipa District), and a number of other Territorial 

Authority (TA) areas (the second tier of local government administration 

in New Zealand) in whole or in part (refer to Table 1). The region is not a 
simple aggregation of the TAs because the region is largely based on a 

water catchment area, whereas the TA boundaries reflect administrative 

divisions that are historical and somewhat arbitrary.  
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Table 1. Territorial Authority Populations for the Waikato Region, 2013. 
 

Territorial 
Authority 

Population 
Count of Area 
Units (AUs) 

Mean AU 
Population 

Median AU 
Population 

Minimum AU 
Population 

Maximum AU 
Population 

Thames-
Coromandel 
District 

27 040 10 2 704 2 845 730 4 490 

Hauraki 
District 

18 740 8 2 343 1 945 500 4 790 

Waikato 
District 

64 890 31 2 093 1 860 0 5 550 

Matamata-
Piako District 

32 200 13 2 477 2 510 300 4 520 

Hamilton City 150 250 46 3 266 3 305 160 7 750 

Waipa District 46 380 29 1 599 1 300 200 3 770 

Otorohanga 
District 

9 330 5 1 866 1 750 350 4 180 

South Waikato 

District 
22 530 16 1 408 1 060 160 3 690 

Waitomo 
District (part) 

9 330 7 1 333 1 000 210 4 670 

Taupo District 
(part) 

34 120 28 1 219 625 10 4 410 

Rotorua 
District (part) 

3 640 4 910 870 160 1 740 

Waikato 
Region (Total) 

418 450 197 2 124 1 840 0 7 750 

Source: Authors’ calculations 
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   In this paper, projections are developed at the Area Unit (AU) level. Area 
Units are the next smaller geographical area below TAs in the geographical 

hierarchy used by Statistics New Zealand. They serve no particular 

administrative purpose – however, each AU is a distinct geographical 

entity, and in urban areas they generally coincide with suburbs and have a 
population of 3 000-5 000. As shown in Table 1, in the Waikato Region 

there are 197 non-marine non-island AUs, with a mean population size in 

2013 of 2 124 (median 1 840), and a range from a minimum of zero to a 
maximum of 7 750. 

 

Statistical Downscaling Method 
 

   In this paper, statistical downscaling was combined with projections of 

future land use to allocate projected TA-level populations to each AU. The 

three-step approach is similar to that employed by Tayman and Swanson 
(1996) and Tayman et al. (1998), but uses a combined statistical and urban 

growth modelling approach to allocate population to the AUs. 

   First, the population was projected at the TA level for the region 
(including for each part-TA) by the National Institute of Demographic and 

Economic Analysis, using a cohort component model (Cameron and 

Cochrane, 2014). The ‘Baseline Medium’ TA-level projected populations 

were used as an input in the following stages, including a backcast 
projection from 2013 (the base year of the TA-level projections) to 2006. 

Second, land use was projected using the Waikato Integrated Scenario 

Explorer (WISE) model. The WISE model is a systems-based integrated 
model that incorporates economic, demographic, and environmental 

components across the entire Waikato Region (Rutledge et al., 2008; 2010). 

The WISE model begins with a base land use map in 2006, incorporating 
24 different land uses, of which there are three residential land use classes 

(medium-high density, low density, and lifestyle blocks) (Rutledge et al., 

2010). At each annual time step, the economic and demographic sub-

models generate demands for economic and residential land use, which are 
inputs into a dynamic, spatially explicit land use change model (Huser et 

al., 2009). The demographic inputs into the WISE model are the TA-level 

population projections for the Waikato region developed in the first step. 
   The land use change model is a CA model specified at the level of four-

hectare grid cells (200m x 200m). The CA model apportions land to 

different uses at each annual time step based on a combination of four 
factors: (1) zoning (which constrains the land uses that are available in each 

area); (2) suitability (the biophysical suitability of land for different uses); 
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(3) accessibility (assesses the attractiveness of a location for different land 
uses based on proximity to desirable or undesirable features); and (4) local 

influence (assesses the attractiveness of a location for a land use based on 

the composition of land use in the surrounding neighbourhood). The CA 

land use model attempts to meet the external demands for land (from the 
economic and demographic models) by assigning cells with the highest 

transition potentials (determined by their zoning, suitability, accessibility 

and local influence) to new land uses. Transitions are made at each annual 
time step. 

   The demand for residential land of each type is determined by first 

assigning a given proportion of population in each territorial authority to 
each residential land use type, and the residual proportion is spread across 

all non-residential land uses. The proportions are generally stable but vary 

over time for some TAs. Next, the number of residential land use cells of 

each type required is determined by combining the population in each 
residential land use calculated in the first step with population density 

values for each residential land use type. These population densities also 

vary over time, between pre-determined maximum and minimum values. 
The area of each land use type (in hectares) and the residential population 

densities (by residential land use type) were exported from the WISE 

model for 2006 and 2013 for use in the next step. 

   In the third step, land use was used to statistically downscale the TA-
level population projections to the AU level. This was achieved in two 

stages, projecting: (1) the population located in residential land uses; and 

(2) the population located in non-residential land uses. In the first stage, 
the number of hectares of each residential land use type in each AU and 

the residential population densities (both from the WISE model) were used 

to calculate the residential population of each AU (i.e. the population 
located in residential land uses) for each year (2006 and 2013). The 

difference between the sum of the residential populations across all AUs 

in each TA and the overall projected TA-level population provides an 

estimate of the total non-residential population in that TA (i.e. the 
population located in non-residential land uses). 

   To estimate the non-residential population in each AU, linear regression 

models were used, with the 2006 TA-level non-residential population as 
the dependent variable, and the 2006 baseline non-residential land use (by 

type) as explanatory variables. That is, regression model is estimated of the 

general form: 
 

NRPi = α + Nkiβ + εi    (1) 
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   Where NRPi is the non-residential population of area unit i, Nki is a vector 
of land uses k in AU i, and εi is an idiosyncratic error term. Four alternative 

model and data specifications were tested for this model: (I) standard 

ordinary least squares (OLS) regression, based on absolute land use; (II) 

standard OLS, based on principal components of land use; (III) a spatial 
Durbin model, based on absolute land use; and (IV) a spatial Durbin model, 

based on principal components of land use. 

   The rationale for applying these four different specifications was as 
follows. Absolute land use (in hectares) is the most basic land use variable, 

and this data specification was included because the coefficients for each 

land use type would be easy for planners to interpret (as the number of 
people per hectare). In contrast, principal components analysis takes the 

land use dataset and converts it into a set of linearly uncorrelated 

components (Joliffe, 2010). This avoids any problems of multicollinearity 

between the land use variables. The principal component specifications 
also allow the model to account for different types of internal land use 

structures that may be reflected in different land-use-specific population 

densities at the AU level. Spatial Durbin models account for 
neighbourhood effects (i.e. where the non-residential population in AU i is 

affected by the size of the non-residential population in surrounding AUs) 

and for lag effects (where the non-residential population in AU i is affected 

not only by the amount of each land use type in that area unit, but also the 
amount of each land use type in surrounding AUs) (Lesage and Pace, 2009).  

   Eleven land uses were initially excluded from the models (bare surfaces; 

indigenous vegetation; other exotic vegetation; wetlands; fresh water; 
marine; aquaculture; utilities; mines and quarries; urban parks; and 

airports), because they were unlikely to contain much of the population. 

The three residential land uses were also excluded from the models, as the 
population in those land uses was already accounted for. That leaves ten 

land use variables in the model. Separate regression models were fitted for 

Waikato District, Hamilton City, and Waipa District, with a fourth 

regression model fitted for the remaining TAs (due to small individual 
sample sizes). The fourth model initially included TA-level fixed effects 

to account for unobserved differences in population density profile 

between each TA. Each regression model was reduced to a final preferred 
model by removing the least significant variable in a backward stepwise 

fashion until the root mean squared error (RMSE) was minimised. The 

resulting regression models are a reasonably good fit for the data, with 
adjusted coefficients of determination (R2) between 0.17 and 0.80 (These 

results are available on request from the authors.).  
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   The regression model coefficient estimates were then used, along with 
projected land use from the WISE model for 2013, to provide a projection 

of the non-residential population of each AU in 2013. When added to the 

residential population from the first stage of step 3, the sum provides an 

un-scaled population projection for each AU. However, two issues arose 
with these un-scaled projections: (1) the projections demonstrated 

significant discontinuity with the known population trend between 2001 

and 2006 for a number of AUs; and (2) a number of AUs were projected 
to quickly fall to zero (or negative) population. To reduce the impact of the 

discontinuities, the in-sample residual was calculated for each AU in 2006 

(being the difference between the actual 2006 population and the estimated 
2006 population). This in-sample residual for each AU was added to the 

projected AU population. This reflects the fact that the residuals in the 

population projection model are likely to be correlated over time. To 

reduce the impact of projected de-population of (particularly rural) AUs, 
each un-scaled AU population projection was constrained so that 

population would not fall by more than 25 per cent over a ten-year period. 

This maximum constraint is similar to the maximum long-run population 
decline observed in any AU over the period 1996-2006. Moreover, this 

adjustment is justifiable because the spatial distribution of population is 

subject to a substantial degree of inertia – once houses have been 

constructed in a given location, some population is likely to remain in that 
location for a long time. That is, population decline at small spatial scales 

is a relatively slow process, unlike that projected in the initial 

unconstrained models. 
   Finally, the combined population of all AUs in each TA was constrained 

to be consistent with the projected population of the TA from the cohort 

component model. Discrepancies between the AU-based population total 
and the TA-level projection were eliminated by applying a common 

scaling factor to the AU populations for each TA, calculated as the ratio of 

the projected TA-level population to the sum of the unconstrained AU 

populations. 
 

Evaluation Method 

 
   The performance of the approach was evaluated in two ways. First, the 

in-sample performance of the model was examined. Specifically, the four 

alternative regression models for projecting non-residential population 
(and the resulting estimates of the AU-level populations) in 2006 were 

compared with those estimated with actual populations. Second, the out-

of-sample forecast accuracy was evaluated by doing a post-hoc comparison 
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of the small area forecasts with data from the 2013 estimated usually 
resident populations (based on the 2013 Census). The forecast accuracy of 

the four models was compared with that of two naïve models: (1) a linear 

extrapolation, that takes the population change from 2001 to 2006, and 

extrapolates this to 2013; and (2) a CSG+ (modified constant share of 
growth) model, which assumes a constant share of TA growth for each AU 

that experienced positive population growth between 2001 and 2006, and 

no growth for areas that declined in population between 2001 and 2006 
(White, 1954; Wilson, 2015a). Rather than using a population projection 

model in the CSG+ model, the change between actual 2006 and 2013 

estimated usually resident populations was used. This provides an over-
conservative estimate of the degree of error and bias in the CSG+ model. 

   Multiple measures of forecast error and bias were estimated. Following 

Wilson (2015b), the primary measure of forecast accuracy is weighted 

mean absolute percentage error (WMAPE). This measure is a weighted 
mean of the absolute percentage errors, with the weights being the size of 

the actual populations in the year projected (Siegel, 2002). WMAPE is 

preferable to other measures (such as Mean Absolute Percentage Error) 
when there is a wide range of population sizes. The AU populations in the 

study area range from zero to 7 750 in 2006, which makes WMAPE the 

most suitable measure. 

   The median absolute percentage error (MedAPE), the median algebraic 
percentage error (MedALPE), and the root mean square error (RMSE) are 

also reported. MedAPE and RMSE both measure forecast precision 

because the direction of the error does not affect these measures, while 
MedALPE measures forecast bias. Although Mean Absolute Percentage 

Error (MAPE) and Mean Algebraic Percentage Error (MALPE) are the 

most commonly used measures of forecast accuracy and bias respectively 
(Tayman, 1996), MedAPE and MedALPE are preferable over MAPE and 

MALPE. This is because using the median error reduces the impacts of 

extreme outliers (i.e. unusually large, or small, errors) and the skewed 

nature of the distribution of error in small populations, on the overall 
measures of error and bias (Tayman and Swanson, 1999). For instance, 

Tayman (1996) shows that MAPE tends to overstate the error, and that the 

degree of overstatement is largest for areas with the smallest population 
size. In contrast to these other measures, RMSE penalises the forecaster for 

forecasts that are further from the actual population (Stoto, 1983), which 

may be helpful for risk averse planners adopting a minimax approach, i.e. 
where forecasts will provide the planner with greater utility if the largest 

errors are minimised. 
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4. RESULTS 
 

   Table 2 shows the results of the evaluation of the in-sample (2006) and 

out-of-sample (2013) performance of the four model and data 

specifications (I-IV), using all four error measures (WMAPE, MedAPE, 
MedALPE, and RMSE). Two out-of-sample comparisons are included: (1) 

using the raw statistical model described in the previous section; and (2) 

using the statistical model, but carrying forward the 2006 in-sample 
residual and using it to modify the 2013 projection. 

 

Table 2. In-Sample and Out-of-Sample Model Performance. 
 

Error Measure Model I Model II Model III Model IV 

In-sample     

WMAPE (%) 19.0 19.0 16.2 16.3 
MedAPE (%) 17.5 17.6 14.8 14.3 

MedALPE (%) -2.7 -2.9 -0.7 -0.1 

RMSE (%)* 26.6 26.5 23.3 22.8 

     
Out-of-sample     

WMAPE (%) 20.8 20.5 19.0 18.2 

MedAPE (%) 19.3 19.1 16.2 16.5 
MedALPE (%) -0.6 -0.6 -1.9 2.1 

RMSE (%)* 28.3 28.4 27.0 25.9 

     

Modified Out-of-
sample** 

    

WMAPE (%) 7.5 6.7 9.0 6.7 

MedAPE (%) 5.7 4.8 6.7 4.8 
MedALPE (%) -0.8 0.0 -1.4 0.0 

RMSE (%)* 14.3 14.0 15.8 14.0 
Note: * As a percentage of the mean AU population; ** Modified out-of-sample measures include a 

correction, whereby the in-sample residual is carried forward to form part of the forecast. 

Source: Authors’ calculations 

 

   Overall, the models exhibit a moderate degree of accuracy, with in-
sample errors of between 14.3 and 19.0 per cent. There is an overall 

downward bias in the models, as the MedALPE values are consistently 

negative. Unlike Wilson and Rowe (2011) the estimates of WMAPE here 
are larger than MedAPE, which probably reflects that absolute errors are 

largest for the AUs with larger populations. In terms of in-sample 
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performance, Models I and II perform similarly, but are clearly dominated 
by Models III and IV (the spatial regression models), which exhibit smaller 

degrees of both error and bias. Comparing Models III and IV, both are 

similar in terms of error, but Model IV exhibits a smaller degree of bias. 

The median extent of bias in Model IV is 0.1 per cent under-projection, 
compared with 0.7 per cent under-projection for Model III. The 

comparison between the four models is similar in the two out-of-sample 

comparisons.  
   Comparing the in-sample with the first out-of-sample results 

demonstrates that the land-use-based projection model performs nearly as 

well at seven years after baseline as it does in the baseline year. There is 
little degradation of performance over time for any of the models, with 

WMAPE increasing by between 1.5 and 2.8 percentage points between the 

in-sample and out-of-sample measures. 

In the modified out-of-sample measures, Model III is clearly worse than 
other models, and Models II and IV perform best and nearly identically. 

There is no evidence of forecast bias in either of these models, and 

WMAPE is just 6.7 per cent. Comparing the out-of-sample and modified 
out-of-sample results demonstrates the substantial performance 

improvement that is obtained by carrying forward the in-sample residual. 

Across all models this reduces the WMAPE by between one half and two 

thirds. 
   Table 3 shows the results of the out-of-sample comparison between the 

four land-use-based models and the two naïve models (linear extrapolation, 

and CSG+). To ensure comparability, the models were used to allocate the 
2013 estimated usually resident population, rather than the 2006-base 

projected TA-level populations for 2013. Thus the error measures differ 

slightly from those reported in Table 2. As with the last comparison in 
Table 2, Models II and IV perform the best of the four land-use-based 

models. They also perform better than the naïve linear extrapolation on 

three out of the four error measures (i.e. all except RMSE). However, the 

CSG+ model performs the best on all error measures, with a WMAPE of 
5.6 per cent, 1.1 percentage points better than Models II and IV. 
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Table 3. Comparative Out-Of-Sample Model Performance. 
 

Error 

Measure 

Model 

I 

Model 

II 

Model 

III 

Model 

IV 

Linear CSG+ 

WMAPE 
(%) 

7.3 6.7 8.7 6.7 7.6 5.6 

MedAPE 

(%) 

5.6 5.0 6.4 5.0 6.4 4.5 

MedALPE 
(%) 

-1.7 -1.7 -0.8 -1.7 -2.3 -0.3 

RMSE (%)* 14.1 13.6 15.6 13.6 12.6 10.3 
Source: the Authors 

 

5. DISCUSSION AND CONCLUSION 
 

   This paper reported results of new land-use-based models for small area 

population projections, and compared those models’ forecast accuracy 

with that of naïve projections based on linear extrapolation and a modified 
constant-shares-of-growth model. The land-use-based approach can 

readily be employed to projections in other areas, but necessarily requires 

a land use model. However, the land use model need not be as detailed as 
that employed here. 

   To date, few studies have compared the forecast accuracy of combined 

projection models with that of simpler models. The preferred model 

(Model II) uses the WISE land use model to derive the residential 
population of each AU, and a spatial Durbin model using absolute non-

residential land use (in hectares) as explanatory variables to derive the non-

residential population of each AU. Model II was preferred over the similar 
Model IV because of the ease of interpretation of coefficients for end-users. 

The preferred model has an out-of-sample WMAPE of 6.7 per cent over a 

seven-year projection horizon. 
   The error in the preferred model compares favourably with previous 

studies that use a variety of models (and measures of error). Wilson and 

Rowe (2011) found WMAPEs after five years varied from 6.0-7.3 per cent 

for areas with a population of 2 000-4 999, and 5.0-6.7 per cent for 
populations of 5 000-14 999, for projections of the population of 

Queensland, Australia. These WMAPEs increased to 8.2-11.3 per cent and 

6.7-9.5 per cent respectively for a ten-year projection horizon. Tayman et 
al. (1998) report that MAPE is a decreasing function of population size, 

based on San Diego data and a projection model that uses land use to 

allocate populations to small areas. They show MAPEs for a ten-year 
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projection that range from 72 per cent for populations of 500, to 39 per cent 
for populations of 5 000, and to 10.5 per cent for populations of 50 000. 

Tayman and Swanson (1996), using a land-use-based model for census 

tracts in Detroit, Dallas-Fort Worth, and San Diego, found MAPEs of 

between 18.6 and 28.5 per cent for a 10-year forecast horizon. For 
comparison, the unweighted out-of-sample MAPE for the preferred Model 

II is 10.9 per cent for a seven-year projection, which is substantially lower 

than those reported in these previous studies. Census tracts typically have 
larger population sizes than the area units projected here, which further 

demonstrates the efficacy of the approach. 

   The source of the improved projections performance of the land-use-
based models, relative to previous projections models, is predominantly 

generated by the carrying-forward of in-sample residuals. Without carrying 

forward the residuals, the out-of-sample performance of the models looks 

much more similar to those of other models. This procedure makes sense 
for statistical and urban growth models (but not for extrapolation or CCM 

models). If other studies using statistical models, such as Chi et al. (2011), 

carried forward residuals in their forecasts, then their model performance 
may look much better. 

   Land-use-based population models that account for spatial 

interdependence (Models II and IV) outperform models that ignore these 

effects (Models I and III). The population density of a given small area 
reflects a complex interplay of the land use of that particular area, and the 

land uses of surrounding areas. For instance, urban land uses will have 

quite different characteristics and population densities than rural land uses, 
even within the same category of land use. Spatial Durbin models allow us 

to capture the spatial dependence, and small area population projection 

models should make more use of spatial models. 
   However, despite their good performance in comparison with past 

modelling efforts, the land-use-based forecasts do not outperform the naïve 

CSG+ model (White, 1954; Wilson, 2015a). The inability of complex 

models to outperform simple models in projections of small area 
population is a general finding in the literature on small area population 

projections (van der Gaag et al., 2003). However, the WISE land use model 

used here has recently undergone significant improvement, with input from 
a wide group of local authority planners. This improved model, which 

operates with a 2013-base land use map, demonstrates substantially better 

in-sample performance, with a nearly 30 per cent reduction in WMAPE 
(based on Model I) to 13.5 per cent. Unfortunately, out-of-sample model 
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testing based on this new land use model will not be possible until after the 
2018 Census, but these initial results are extremely promising. 

   There are a number of limitations to the models presented here. First, the 

projections do not include an explicit measure of uncertainty. Instead, the 

AU populations were simply forecasted as point estimates. However, the 
measures of forecast error could be used to estimate uncertainty (Tayman, 

2011). It is worth noting that the degree of uncertainty present in 

population projections at smaller geographic levels is substantially larger 
for smaller populations (Cameron and Poot, 2011), so understanding better 

the uncertainty in the estimates is clearly important. Second, because the 

forecasts are based on a statistical model at the small-area level, they 
potentially suffer from the same limitations as statistical models outlined 

in the introduction. However, because the statistical model is only used to 

project the non-residential population, rather than the whole population, 

these problems are somewhat mitigated. Third, the projections were 
evaluated based on only a single period in time and a single region of New 

Zealand. It may be that demographic trends fit the land-use-based models 

particularly well (or not so well) by chance alone. The model will be 
evaluated further in later periods, but should also be applied to other 

regions and contexts. 

   Fourth, it is likely that small area population projections present a 

problem of endogeneity. If projections are used in planning decisions then 
they may become somewhat self-fulfilling prophecies. For instance, if 

population is projected to increase in a given AU, then planners may create 

infrastructure that supports the expected additional population, leading to 
more development in that AU and consequently more population. However, 

if population had been projected to increase elsewhere instead, then 

infrastructure spending, development and population growth would be 
directed towards that other area instead. Thus, small area population 

projections should be used as one tool among many in the planning process.  

   Finally, despite the forecast accuracy of the land-use-based models being 

lower than naïve models, the land-use-based models do serve an important 
purpose. Too often, population projection models are seen by local 

authority planners and elected officials as ‘black boxes’ or academic 

curiosities that have little relevance to the real world. As Rainford and 
Masser (1987) note, bridging the gap between the technical aspects of 

forecasting and the needs of planners is both important and difficult. 

Achieving ‘buy-in’ from planners and elected officials is imperative in 
ensuring that population projections are understood and used effectively to 

achieve improved planning outcomes. One part of this is to ensure that 

planners can recognise that planning and policy have demonstrable effects 
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on the projected populations at the small-area level. The land-use-based 
models have been very successful in this, and are being used extensively 

in long term planning processes at the local and regional level. Further 

enhancements to the model, including the improved land use modelling 

described above, will likely further increase the acceptance of planners for 
integrated modelling approaches.  
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