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ABSTRACT: The novel Coronavirus disease-2019 (COVID-19) pandemic 

has caused unprecedented global devastation across various sectors. This study 

employs a five-compartmental deterministic mathematical model to analyse the 

transmission dynamics of this highly contagious disease in Bangladesh. To 

understand and control the system’s dynamics in our model, we investigated the 

basic reproduction number, solution existence, equilibrium states stability 

analysis, sensitivity analysis, and behavioural dynamics of COVID-19 through 

numerical simulations. We also evaluated the influence of progression and 

recovery rates on the COVID-19 dynamics in Bangladesh. Further, the model 

identifies significant parameters from Bangladesh’s COVID-19 data. The findings 

in this study aid in quantifying diverse parameters to assess the disease severity 

and formulate effective control strategies, thereby accelerating the containment of 

the virus spread in Bangladesh.   
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1. INTRODUCTION 

 

   Infectious diseases are a leading cause of death and morbidity (Vos et 

al., 2020). Outbreaks of infectious diseases across several regions of the 

world are not new. The outbreak of Severe Acute Respiratory Syndrome 

(SARS-CoV) in Shunde district, Guangdong province, China, in 2003 and 

Middle East Respiratory Syndrome (MERS-CoV) in Jeddah, Kingdom 

Saudi Arabia, in 2012 are two recent examples (World Health Organization 

(WHO), 2022; Altamimi et al., 2019). The 2003 SARS-CoV outbreak 

resulted in about 8000 cases and 800 deaths (crude case fatality rate, Case 

Fatality Rate (CFR): 10%), while as of 16th November 2022, more than 

2600 cases of MERS-CoV and 935 deaths (CFR: 36%) have been reported 

to WHO (WHO, 2022).  

   In late 2019, a new coronavirus emerged in Wuhan, Hubei Province, 

China, which was later named SARS-CoV-2. The Coronaviridae family 

and genus Beta coronavirus are responsible for the recent coronavirus 

disease (COVID-19) (Coronaviridae Study Group of the International 

Committee on Taxonomy of Viruses, 2020). Among all zoonotic diseases, 

COVID-19 is the most dangerous, devastating, and transmissible (Biswas 

et al., 2020; Prathumwan et al., 2020). This virus can be transmitted 

directly from person to person through the droplet of cough and sneeze of 

the infected person (Huang et al., 2020). As of 20th April 2021, about 142.7 

million COVID-19 cases and more than 3 million deaths were recorded 

across 213 countries and territories (WHO, 2021).  

   Furthermore, the number of COVID-19 infected patients recorded in 

different countries till 20th April 2021 shows that infection rates differ by 

country around the world. Some non-pharmacological factors such as 

regional climatic conditions, population density, environmental, 

transportation and mobility, and socioeconomic status may account for 

variation in infection rates by country (Iqbal et al., 2020; Ahmed et al., 

2021; Alidadi et al., 2022). Despite better socio-economic status, the 

countries in cold regions such as the United Kingdom, United States of 

America, Germany, Italy, France, and Spain have higher infection rates 

than countries in the Middle East, and South Asia (Iqbal et al., 2020). High 

values of climatic factors i.e., temperature and relative humidity may 
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partially influence the rate of COVID-19 transmission, and it was found 

that 1 unit increase in both factors was associated with a decrease in 

COVID-19 deaths (Ma et al., 2020; Tosepu et al., 2020; Wu et al., 2020). 

Despite the impact of climatic factors, population density and mobility 

alone can drive the spread of COVID-19. For example, although there was 

high temperature and humidity in Riyadh and São Paulo cities, the 

infection rate was also very fast in those cities (Ahmed et al., 2021). Also, 

social distancing is very challenging in densely populated cities such as 

New York, Madrid, Lombardy, and Hubei where more infections were 

recorded (Ahmed et al., 2021). However, the transmission was also very 

fast in Dhaka and Chittagong cities of Bangladesh owing to their dense 

population compared to rural areas. Bangladesh recorded its first case of 

COVID-19 on 8th March 2020 (Monjur and Hassan, 2020). Although the 

government quickly implemented preventive measures to control this 

highly infectious disease, it was a challnging task for this densely 

populated country. As of 20th April 2021, Bangladesh had recorded more 

than 700,000 COVID-19 cases, and over 10,000 people have died due to 

the disease (WHO, 2021). Currently, there is no specific treatment for 

COVID-19, and vaccines have varying effective rates. Thus, we must keep 

expanding our knowledge and understanding of the dynamic behaviour of 

transmission of this disease that can help to control and eliminate the 

disease. Previous studies have developed mathematical models to describe 

the dynamics of COVID-19 (Aguilar et al., 2020; Alkahtani and Alzaid, 

2020; Gebremeskel et al., 2021; Kabir et al., 2020; Tuan et al., 2020).  

   In their work, Aguilar et al. (2000) used a susceptible-exposed-

symptomatic-asymptomatic-recovered (SEYAR) model to investigate the 

effect of asymptomatic individuals on the transmission of COVID-19 in 

several countries. The dispersal effect of reducing the infection and 

transmission of COVID-19 in Bangladesh has been previously studied 

(Kabir et al., 2020; Masud et al., 2020). However, these models did not 

consider the movement of individuals from mild to critical compartments 

due to co-infection or comorbidities. 

   In this current study, we developed a five-compartmental deterministic 

mathematical–Susceptible-Latent-Mild-Critical-Recovered/Removal 

(SLMCR) model to expand further our knowledge of the dynamics of 

COVID-19 transmission in Bangladesh. The basic reproduction number, 

the existence of the model’s solution, stability analysis at equilibrium states 

and sensitivity analysis were investigated. We also explored the dynamical 

behaviour of COVID-19 in Bangladesh using numerical simulations. 



96                                                                                    Mohiuddin et al. 

    The rest of the paper is organised as follows: After the introduction in 

section 1, we described the methods in section 2. In section 3, we present 

the results from examining the local stability of the equilibrium states, 

model calibration sensitivity analysis and numerical simulations. Section 

4 concludes the paper. 

 

2. MODEL FORMULATION 

  

   We formulated a five-compartmental deterministic mathematical 

SLMCR model to explain the transmission dynamics of COVID-19. The 

population (N) is partitioned into five individual compartments, namely, 

susceptible (S) (individuals who may become infected with the disease), 

Latent (L) (individuals who are infected but have not yet been exposed or 

show any sign or symptoms of the disease (incubation period)), Mild (M) 

(those infected individuals who are exposed flu-like symptoms and can be 

treated at home), Critical (C) (those infected individuals who are very sick 

and needed hospitalisation), and recovered (R) (individuals who recovered 

successfully and have immunity against the disease or died). It is 

considered that the size of the total population at any time t, N(t), is 

constant and homogeneously mixed. The formulation is of the form: 

N(t) = S(t) + L(t) + M(t) + C(t) + R(t)                                              (1)                                                                  

   The model flow diagram is presented in Figure 1. 

 

 

 

 

Figure 1. Five Compartmental Model (SLMCR) COVID-19 Model 

Diagram for Bangladesh. Source: the Authors. 
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   The parameter Ʌ represents the recruitment rate at which new individuals 

enter the susceptible class; parameters ω1 , ω2 are per capita rates at which 

the latent individuals become mildly and critically infected, respectively; 

γ1 , γ2 are per capita rates at which the mildly and critically infected 

individuals recovered; β is the transmission rate between infection and 

susceptible population; ϕ is the transfer rate of mildly infected individuals 

to critically infected individuals due to the progression and possibly 

comorbidities with other diseases, including hypertension, diabetes, 

cardiovascular disease, and respiratory system disease; μ is the per capita 

natural death rate across the total population.  

   As depicted in Figure 1, the transmission dynamics of COVID-19 can be 

expressed by the following nonlinear ordinary differential equations that 

describe the model: 
dS

dt
= Λ − βS(M + C) − μS                                                                       (2)                                                                                                  

dL

dt
= βS(M+ C) − (ω1 +ω2 + μ)L                                                       (3)                                                                               

dM

dt
= ω1L − (ϕ + γ1 + μ)M                                                                   (4)                                                                                                         

dC

dt
= ω2L + ϕM− (γ2 + μ)C                                                                  (5)                                                                                  

dR

dt
= γ1M+ γ2C − μR                                                                             (6) 

with the following initial conditions 

S(0) ≥ 0, L(0) ≥ 0,M(0) ≥ 0, C(0) ≥ 0, R(0) ≥ 0.                              (7)                                                    

   The existence and the non-negativity of the solutions of the above 

system, subjected to the initial conditions, can easily be shown for all t ≥
0. All model parameters are assumed to be non-negative, so we show 

directly that each state variable also remains non-negative for all t ≥ 0.  

   By adding equations (2) – (6), we get: 

dN

dt
=
dS

dt
+
dL

dt
+
dM

dt
+
dC

dt
+
dR

dt
= Λ − μN 

   Integrating the above equation, we find 

N(t) =
Λ

μ
− [

Λ

μ
− N(0)] e−μt. 

As 𝑡 → ∞, 0 ≤ N(t) ≤
Λ

μ
. 
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   This indicates the boundedness of the total population size N(t) and 

consequently, each of the states S, L,M, C, and R are also bounded.  

   In this model, the recovered individuals R(t) do not appear in the 

equations (2)-(5), i.e., these equations are independent of R(t). Hence, if 

we only wish to track disease incidence and prevalence, we can focus our 

attention on the following reduced system:  

dS

dt
= Λ − βS(M + C) − μS                                                                       (8)                                                                              

dL

dt
= βS(M+ C) − (ω1 +ω2 + μ)L                                                       (9)                                                                                  

dM

dt
= ω1L − (ϕ + γ1 + μ)M                                                                 (10)                                                                                        

dC

dt
= ω2L + ϕM− (γ2 + μ)C                                                                (11)                                                                                              

   The solutions of this system are non-negative and bounded. Therefore, 

the feasible solutions set for equations (8) – (11) enter the region: 

D = {(S, L,M, C, ) ∈ R+
4 : S + L + M+ C = N}.                                         (12)                                                                     

where D is the positively invariant region for the system (8) – (11). 

Therefore, in this study, we consider the system of equations (8) – (11) in 

set D. 

 

Basic Reproduction Number (𝑹𝟎) 
 

   Basic reproduction number (R0) helps understand the duration and size 

of an epidemic (Kuddus and Rahman, 2021; McBryde et al., 2020; 

Rahman et al., 2021). This parameter is one of the most important to 

mathematical modellers because it determines whether a disease outbreak 

will die out or persist in a population (Biswas et al., 2014; Booton et al., 

2020; Kuddus et al., 2020). The average number of new infections 

produced by a single infective in the susceptible population is the basic 

reproduction number. It can be determined by using the method of next-

generation matrix (Kuddus et al., 2021). The next-generation matrix is the 

product of matrices F and −V−1, where matrix F represents the 

transmission components of infected states and matrix V describes 

transitions between and out of the infected states. In this model, the 

infected compartments are L,M and C. The matrices F and V for this model 

are given as 
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F = (
0 βS0 βS0

0 0 0
0 0 0

)  and  

V = (

−(ω1 +ω2 + µ) 0 0
ω1 −(ϕ+ γ1 + μ) 0
ω2 ϕ −(γ2 + μ)

) 

The next-generation matrix K is given by Kuddus et al. (2019).  

K = F(−V−1)

= (
0 βS0 βS0

0 0 0
0 0 0

)

(

 
 
 
 

1

𝜔1 + 𝜔2 + µ
0 0

𝜔1
(𝜔1 +𝜔2 + µ)(𝜙 + 𝛾1 + 𝜇)

1

𝜙 + 𝛾1 + 𝜇
0

𝜙𝜔1 +ω2(𝜙 + 𝛾1 + 𝜇)

(𝜔1 +𝜔2 + µ)(𝜙 + 𝛾1 + 𝜇)(𝛾2 + 𝜇)

𝜙

(𝜙 + 𝛾1 + 𝜇)(𝛾2 + 𝜇)

1

𝛾2 + 𝜇)

 
 
 
 

= (

βS0[𝜔1(𝜙 + 𝛾2 + 𝜇) + 𝜔2(𝜙 + 𝛾1 + 𝜇)]

(𝜔1 +𝜔2 + µ)(𝜙 + 𝛾1 + 𝜇)(𝛾2 + 𝜇)

βS0[(1 + 𝛾2 + 𝜇)]

(𝜙 + 𝛾1 + 𝜇)(𝛾2 + 𝜇)

βS0

(𝛾2 + 𝜇)
0 0 0
0 0 0

) 

   The spectral radius of the next generation matrix K is considered as the 

basic reproduction number. Hence, the basic reproduction number is 

obtained as: 

R0 =
βS0[ω1(ϕ + γ2 + μ) + ω2(ϕ + γ1 + μ)]

(ω1 +ω2 + µ)(ϕ + γ1 + μ)(γ2 + μ)

=
βΛ[ω1(ϕ + γ2 + μ) + ω2(ϕ + γ1 + μ)]

µ(ω1 +ω2 + µ)(ϕ + γ1 + μ)(γ2 + μ)
 

 

Existence of Equilibria 

 

   The equilibrium is such a state at which the rate of changes of the system 

variables with respect to time will be zero. i.e. 
dS

dt
=

dL

dt
=

dM

dt
=

dC

dt
= 0. 
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   This system has two types of equilibrium points: disease-free equilibrium 

(the equilibrium without disease) and endemic equilibrium (equilibrium 

with disease). The disease-free equilibrium of this system always exists 

and is defined as 

X0 = (S0, L0, M0, C0) = (
Λ

µ
, 0, 0, 0) 

   The endemic equilibrium of this system is also obtained as X∗ =
(S∗, L∗, M∗, C∗). 
where, 

         

{
  
 

  
 S

∗ =
S0

R0
                                          

L∗ =
(R0−1)𝜇(𝜙+𝛾1+𝜇)(𝛾2+𝜇)

β𝜔1(𝜙+𝛾2+𝜇)+β𝜔2(𝜙+𝛾1+𝜇)

M∗ =
(R0−1)𝜇𝜔1(𝛾2+𝜇)

β𝜔1(𝜙+𝛾2+𝜇)+β𝜔2(𝜙+𝛾1+𝜇)

C∗ =
(R0−1)𝜇[𝜙𝜔1+𝜔2(𝜙+𝛾1+𝜇)]

β𝜔1(𝜙+𝛾2+𝜇)+β𝜔2(𝜙+𝛾1+𝜇)

                                                               (13)                                                                       

   Equation (13) shows that if R0 > 1 then the endemic equilibrium X∗ =
(S∗, L∗, M∗, C∗) ∈ D. 

 

3. STABILITY ANALYSIS  

     

   The following applies in order to analyse the stability of the equilibrium 

points of the systems of equations (2)-(6): 

 

Infection-Free Equilibrium 

    

   Lemma 1: The infection-free equilibrium of the model is locally 

asymptotically stable if R0 < 1 and unstable if R0 > 1. 

   Proof:  The Jacobian of the system of equations (2) – (6) of the model is 

as follows: 

J = (

−β(M+ C) − μ

β(M + C)
0
0

0
−(ω1 +ω2 + μ)

ω1
ω2

−βS
βS

−(ϕ + γ1 + μ)
ϕ

−βS
βS
0

−(γ2 + μ)

) 

      At the infection-free equilibrium point, E0, the Jacobian is reduced to 
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J(E0) =

(

 

−μ
0
0
0

0
−(ω1 +ω2 + μ)

ω1
ω2

−βS0

βS0

−(ϕ+ γ1 + μ)
ϕ

−βS0

βS0

0
−(γ2 + μ))

  

   The 1st column indicates only the diagonal term, which has only the 

negative eigenvalue, −μ, the other eigenvalues can be derived from the 

sub-matrix, J1(E
0) formed by excluding the 1st row and column of J(E0). 

This gives, 

J1(E
0) = (

−(ω1 +ω2 + μ) βS0 βS0

ω1 −(ϕ + γ1 + μ) 0
ω2 ϕ −(γ2 + μ)

) 

   To determine the stability of the matrix J1(E
0), we use the Routh-

Hurwitz criteria for stability (Allen, 2007). Routh-Hurwitz criterion states 

that (i) the trace is negative, (ii) the sum of the two-by-two principal minors 

is positive, and (iii) the determinant is negative. Beginning with the trace, 

we have 

Condition 1: 

A1 = trace(J1) = −(ω1 +ω2 + μ) − (ϕ + γ1 + μ) − (γ2 + μ) < 0 

Condition 2: 

A2 = |
−(ϕ + γ1 + μ) 0

ϕ −(γ2 + μ)
| + |

−(ω1 +ω2 + μ) βS0

ω2 −(γ2 + μ)
| 

+ |
−(ω1 +ω2 + μ) βS0

ω1 −(ϕ + γ1 + μ)
| 

A2 = (ϕ + γ1 + μ)(γ2 + μ) + (ω1 +ω2 + μ)(γ2 + μ) − βS
0ω2

+ (ω1 +ω2 + μ)(ϕ + γ1 + μ) − βS
0ω1 

A2 = (ϕ + γ1 + μ)(γ2 + μ) + (ω1 +ω2 + μ)(γ2 + μ)
+ (ω1 +ω2 + μ)(ϕ + γ1 + μ) − βS

0(ω1 +ω2) 

         = (ϕ + γ1 + μ)(γ2 + μ) + (ω1 +ω2 + μ)(γ2 + μ) + (ω1 +ω2 +

μ)(ϕ + γ1 + μ)  

−
(ω1 +ω2)(ω1 +ω2 + μ)(ϕ + γ1 + μ)(γ2 + μ)R0

ω1(ϕ + γ2 + μ) + ω2(ϕ + γ1 + μ)
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=
1

ω1(ϕ+γ2+μ)+ω2(ϕ+γ1+μ)
[ω1ϕ(ω1 +ω2 + μ)(ϕ + γ1 + μ) + ω2(ω1 +

ω2 + μ)(ϕ + γ1 + μ)
2 +            ω1ϕ(ω1 +ω2 + μ)(γ2 + μ) + ω1(ω1 +

ω2 + μ)(γ2 + μ)
2 +ω1ϕ(ϕ+ γ1 + μ)(γ2 + μ) + ω1(ϕ + γ1 + μ)(γ2 +

μ)2 +ω2(ϕ + γ1 + μ)
2(γ2 + μ) + (ω1 +ω2 + μ)(ϕ + γ1 + μ)(γ2 +

μ)(ω1 +ω2)(1 − R0)] > 0 if R0 < 1. 

Condition 3: 

                  A3 = det(J1) = (ω1 +ω2 + μ)(ϕ + γ1 + μ)(γ2 +  μ)(R0 −
1) < 0 if R0 < 1.      

   Finally, if we multiply the expressions for A1 and A2. It is straightforward 

to show that the condition A1A2 > A3 is satisfied when R0 < 1. Thus, by 

the Routh-Hurwitz criteria, the disease-free equilibrium is locally 

asymptotically stable when R0 < 1. 

 

Disease Endemic Equilibrium 

 

   Lemma 2: The endemic equilibrium of the model is locally 

asymptotically stable if 𝑅0 > 1. 

   At the endemic equilibrium, the Jacobian of the system (2)-(5) reduces 

as follows: 

J∗

=

(

 

−β(M∗ + C∗) − µ 0 −βS∗ −βS∗

β(M∗ + C∗) −(ω1 +ω2 + µ) βS∗ βS∗

0 ω1 −(ϕ + γ1 + µ) 0

0 ω2 ϕ −(γ2 + µ))

  

   The characteristic matrix is defined as 

(J∗ − λI)

=

(

 

−β(M∗ + C∗) − µ − λ 0 −βS∗ −βS∗

β(M∗ + C∗) −(ω1 +ω2 + µ) − λ βS∗ βS∗

0 ω1 −(ϕ+ γ1 + µ) − λ 0

0 ω2 ϕ −(γ2 + µ) − λ)

  

   The characteristic equation is derived as 
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      |J∗ − λI| = 0    

𝑜𝑟, |

−β(M∗ + C∗) − µ − λ 0 −βS∗ −βS∗

β(M∗ + C∗) −A − λ βS∗ βS∗

0 ω1 −B − λ 0
0 ω2 ϕ −C− λ

| = 0  

or, {−β(M∗ + C∗) − µ − λ} |

−A − λ βS∗ βS∗

ω1 −B − λ 0
ω2 ϕ −C− λ

|

− β(M∗ + C∗) |

0 −βS∗ −βS∗

ω1 −B − λ 0
ω2 ϕ −C− λ

| = 0 

𝑜𝑟, {−β(M∗ + C∗) − µ − λ}[(−A − λ)(−B − λ)(−C − λ) − βS∗ω1(−C −
λ) + βS∗{ϕω1 −        ω2(−B − λ)}] − β(M

∗ + C∗)[βS∗ω1(−C − λ) −
βS∗{ϕω1 −ω2(−B − λ)}] = 0  

or, {β(M∗ + C∗) + µ + λ}[(A + λ)(B + λ)(C + λ) − βS∗ω1(C + λ) −
βS∗{ϕω1 +ω2(B + λ)}] −       β(M

∗ + C∗)[−βS∗ω1(C + λ) −
βS∗{ϕω1 +ω2(B + λ)}] = 0  

or, {β(M∗ + C∗) + µ + λ}{λ3 + (A + B + C)λ2 + (AB + AC + BC)λ +

ABC − βS∗Cω1 − βS
∗ω1λ −       βS

∗ϕω1 − βS
∗Bω2 − βS

∗ω2λ} +

β(M∗ + C∗){βS∗Cω1 + βS
∗ω1λ + βS

∗ϕω1 + βS
∗Bω2 +        βS

∗ω2λ} =

0  

or, λ4 + {β(M∗ + C∗) + µ + A + B + C}λ3 + [{β(M∗ + C∗) + µ}(A +

B + C) + AB + AC + BC −      βS∗ω1 − βS
∗ω2]λ

2 + [{β(M∗ + C∗) +

µ}(AB + AC + BC) + ABC − βS∗µω1 − βS
∗Cω1 −      βS

∗ϕω1 −

 βS∗µω2 − βS
∗Bω2]λ + [{β(M

∗ + C∗) + µ}ABC − βS∗µCω1 −

βS∗µϕω1 −      βS
∗µBω2] = 0  

or, λ4 + C3λ
3 + C2λ

2 + C1λ + C0 = 0  

where 

      A = ω1 +ω2 + µ  

      B = ϕ + γ1 + µ  

      C = γ2 + µ  
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      C3 = β(M
∗ + C∗) + µ + A + B + C  

           = µR0 + A+ B + C > 0  

      C2 = {β(M
∗ + C∗) + µ}(A + B + C) + AB + AC + BC −   βS∗ω1 

                               −βS∗ω2  

           = µR0(A + B + C) + AB + AC + BC −  
βS0(ω1+ω2)

R0
  

           =

  
µR0(A+B+C)[ω1(ϕ+C)+ω2B]+[ABϕ+ACϕ+BCϕ+AC

2+BC2]ω1+(AB
2+B2C)ω2

ω1(ϕ+C)+ω2B
>0 

C1 = {β(M
∗ + C∗) + µ}(AB + AC + BC) + ABC − βS∗µω1 − βS

∗Cω1
− βS∗ϕω1 − βS

∗µω2 − βS
∗Bω2 

           = µR0(AB + AC + BC) + ABC −
βS0µ(ω1+ω2)

R0
−
βS0[ω1(ϕ+C)+ω2B]

R0
  

           = µR0(AB + AC + BC) + ABC −
ABCµ(ω1+ω2)

ω1(ϕ+C)+ω2B
− ABC  

           =
[ω1(ABϕ+ACϕ+AC

2+BCϕ+BC2)+ω2(AB
2+B2C)]µR0+ABCµ(ω1+ω2)(R0−1)

ω1(ϕ+C)+ω2B
> 0 if  

R0 > 1 

      C0 = {β(M
∗ + C∗) + µ}ABC − βS∗µCω1 − βS

∗µϕω1 − βS
∗µBω2  

           = µR0ABC −
βS0µ[ω1(ϕ+C)+ω2B]

R0
  

           = µR0ABC − ABCµ  

           = ABCµ(R0 − 1)> 0 if  R0 > 1                                 (14)                                                                             

   From (14) it is easy to verify that C3 > 0, C2 > 0, C1 > 0 and C0 > 0 if 

R0 > 1. Hence, by the Routh-Hurwitz stability criterion, the disease 

endemic equilibrium point E∗ is locally asymptotically stable for R0 > 1. 
 

4. RESULT AND DISCUSSION 

 
Parameters Estimation 
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   The techniques described above were applied to Bangladesh COVID-19 

data between March 2020 and April 2021 (WHO, 2021). We first estimated 

the parameters of the COVID-19 compartmental model by fitting various 

combinations of parameters in equations (2) - (6) to the number of COVID-

19 cases. We parameterised equations (2) - (6) with values obtained from 

the literature (see Table 1). Other parameters were estimated by fitting the 

data via the least-squares method (Kuddus et al., 2020) (Figure 2).  

Figure 2. Time Series Plot of Reported Monthly COVID-19 Data (Red 

Dots) and Corresponding Best Fit (Blue Line) in Bangladesh. Source: the 

Authors.  

Table 1: Estimation of Model Parameters. Source: the Authors.  

Parameters Description Values             References 

N Population in 2021 164,689,383  Worldometer (2020) 

Μ Death rate 1/70  Kuddus et al. (2020) 

Β Transmission rate 1.8 × 10−5 Fitted 

ω1 Progression rate from L to M 0.0129 Fitted 

ω2 Progression rate from L to C 0.022 Fitted 

γ1 Recovery rate from M to R 0.02  Rahman and Kuddus, 2020 

γ2 Recovery rate from C to R 0.01  Rahman and Kuddus, 2020 

Λ Recruitment rate 1 Kuddus et al. (2019) 

Φ Co-infection rate 0.3 Rahman and Kuddus (2020) 
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Sensitivity Analysis 

    

   Latin Hypercube Sampling (LHS) with 10,000 runs per simulation to 

investigate the sensitivity of R0 to model parameters. Figure 3 shows the 

Partial Rank Correlation Coefficients (PRCCs) of R0. The results show that 

transmission rate (β),  progression rates (ω1 and ω2) and co-infection rate 

ϕ are positively correlated with R0. On the other hand, recovery rates γ1 

and γ2 are negatively associated with R0. 

Figure 3. Sensitivity Analysis of Model Parameters; β,ω1, ω2, γ1, γ2,  and 

ϕ. Source: the Authors. 

 

Numerical Simulation 

    

   We carried out numerical simulations to support the analytical outcomes 

and assessed the impact of model parameters. We have selected or 

estimated suitable baseline parameter values consistent with COVID-19 

infection and transmission (Table 1). We obtained two equilibrium points, 

the disease-free equilibrium X0 and a disease-endemic equilibrium X∗. 
Using different initial conditions for the latent and infected population, we 

found that if  R0 < 1, then the disease-free equilibrium is locally 

asymptotically stable. Furthermore, if R0 > 1 then COVID-19 persists in 

the population. Figure 4 illustrates the stability of the disease-free 

equilibrium (i. e., when R0 < 1) by depicting system trajectories through 
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E vs I  plane originating from different initial conditions. In this case, 

COVID-19 disease dies out. Similarly, Figure 5 shows the stability of the 

disease endemic equilibrium (i. e., when R0 > 1), in this case, COVID-

19 disease persists in the population. 

 
Figure 4. Disease-Free 

Equilibrium: R0 < 1. In this Case, 

COVID-19 Fade-Out (Black Dot). All 

parameter values assume their baseline values 

given in Table 1. Source: the Authors. 

 
Figure 5. Endemic Equilibrium: 

R0 > 1. In this Case, COVID-19 Persist in 

the Population (Black Dot). All parameter 

values assume their baseline values given in 

Table 1. Source: the Authors. 
    
   Figures 6 and 7 show the effect of the progression rate on the dynamics 

of mild and critical cases of COVID-19. Our findings suggested that 

increasing the progression rate increases the prevalence of mild and critical 

cases. Therefore, it is crucial to reduce the progression rate to implement 

different intervention policies, including public awareness, education 

programs for public health, following good respiratory hygiene and social 

distancing. Figures 8 and 9 depict the impact of the recovery rate on the  

dynamics of mild and critical cases of COVID-19. Results recommended 

that the mild and critical cases of COVID-19 decrease if we increase the 

recovery rate. Our finding is consistent with reality because if we 

implement different intervention policies, including prompt treatment, 
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then the recovery rate will be increased. Consequently, mild and critical 

cases of COVID-19 will be reduced (Kuddus and Rahman, 2021).   

 

Figure 6. Impact of Progression Rate 

(ω1) on the Dynamics of Mild Cases 

(M). All parameter values assume their baseline 

values given in Table 1. Source: the Authors. 

 

Figure 7. Impact of Progression 

Rate (ω2) on the Dynamics of 

Critical Cases (C). All parameter 

values assume their baseline values given in 

Table 1. Source: the Authors. 

 
Figure 8. Impact of Recovery Rate 

(γ1) on the Dynamics of Mild 

Cases (M). All parameter values assume 

their baseline values given in Table 1. Source: 

the Authors. 
 

 

 
Figure 9. Impact of Recovery Rate 

(γ2) on the Dynamics of Critical 

Cases (C). All parameter values assume 

their baseline values given in Table 1. Source: 

the Authors. 
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5. CONCLUSIONS  

   Compartmental mathematical models are critical tools that aid decision-

makers in reducing the speed of transmission of COVID-19 by acquiring 

different concise and accurate information and suitable parameters. We 

have developed in this study a deterministic five-compartmental 

transmission dynamics COVID-19 model for Bangladesh. We derived the 

analytical expression for the R0 using a next-generation matrix and found 

that disease-free equilibrium is locally asymptotically stable if the R0 < 1, 

which means that the disease will eventually fade out. We showed that 

COVID-19 disease persists in the population if the R0 > 1. Sensitivity 

analysis was also performed to explore the impact of model parameters. 

We showed that the spread of COVID-19 disease largely depends on the 

transmission rate. Consequently, effort should be made to minimise 

unnecessary contact with COVID-19 infected individuals. However, 

treating COVID-19 infection early will also reduce transmission from an 

infected to uninfected.    

   Mathematical models can also be applied in different regional settings. 

A previous regional study in New South Wales (NSW) showed that 

transmission control is very effective and efficient for reducing the burden 

of COVID-19 in metropolitan and rural health districts in NSW, Australia 

(Rahman et al., 2023), which is similar to our results. Another regional 

setting modelling study in Wuhan and Mainland China shows that basic 

reproduction number significantly impacts COVID-19 dynamics. If the 

basic reproduction number is greater than one, then COVID-19 persists in 

the population. Otherwise, the disease dies out (Zheng et al., 2022; Kuddus 

and Rahman, 2021), consistent with our study. Hence, it is very important 

to keep the basic reproduction number below one for controlling the 

outbreak of COVID-19 in a regional setting. 

    Hence, our findings have the potential to offer valuable insights to 

policymakers aimed at reducing overall infections and mortality and 

delaying and reducing peak demand for healthcare resources within the 

regional setting. Given the substantial geographical variations in 

population density and social interactions across different regions in 

Bangladesh, it is more prudent to implement a uniform and consistent 

transmission control strategy for alleviating the burden of COVID-19. 

These conclusions bear significant implications for many other nations and 

regions to understand better and respond to their regional epidemics 

associated with the continued COVID‐19 pandemic. Future models could 

extend our framework by introducing a new compartment that accounts for 
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vaccination classes to explore the effect of vaccination to minimize the 

impact of COVID-19 in Bangladesh.    
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